Issue
I have a csv with unstructured information. I want to use pivot_table (or merge ?) from pandas to have only one rows for every instance.task_id.number and to spread out metric question in several colums.
For example if i have 4 instance.task_id_number, i need to have 4 columns of metric.question I tried with pivot and pivot.table and merge but nothing match my expectation.
Thanks for your help !
#Edit : as asked, i did it as a example :
What i have :
df = pd.DataFrame([["A", 2], ["A", 3], ["A", 6], ["B", 10], ["B", 11], ["B", 12]])
what i want :
df2 = pd.DataFrame([["A", 2, 3, 6], ["B", 10, 11, 12]])
#Edit 2 : What i tried with pivot_table with the real dataframe. I put aggfunc with "metric.question and drop it in values.
I got the error :
AttributeError: 'SeriesGroupBy' object has no attribute 'index'.
I tried to reset the index but it doesn't work better. The code :
import pandas as pd
stockage = pd.read_csv(r"C:\Users\vion1\Ele\Engie\Import_Engie\asmt_assessment_instance_question.csv", encoding="cp1252")
df = pd.DataFrame(stockage)
#df = df.filter(["instance.task_id.number", "metric.question"], axis = 1)
df2 = df.reset_index(drop = True).pivot_table(index=['instance.task_id.number'],
columns='metric.question',
values=["instance","instance.trigger_id","instance.task_id.number","instance.taken_on","instance.state",
"string_value","metric.order","value","sys_updated_on","instance.task_id.company",
"instance.user.u_company_customer.u_customer_trigram","instance.task_id.contact_type",
"instance.task_id.assignment_group"], aggfunc="metric.question")
print(df2)
df2.to_csv(r"C:\Users\vion1\Ele\Engie\Import_Engie\resultat.csv")
Solution
Can you try this:
>>> df.assign(cols=df.groupby('instance.task_id.number').cumcount()) \
.pivot(index='instance.task_id.number',
columns='cols',
values='metric.question') \
.rename_axis(index=None, columns=None)
0 1 2 3
REQ0510079 Q1 Q2 Q3 Q4
REQ0527568 Q1 Q2 Q3 Q4
Old answer
Following my comment:
data = {'instance.task_id.number': ['REQ0510079','REQ0510079','REQ0510079','REQ0510079',
'REQ0527568','REQ0527568','REQ0527568','REQ0527568'],
'metric.question': ['Q1', 'Q2', 'Q3', 'Q4', 'Q1', 'Q2', 'Q3', 'Q4']}
df = pd.DataFrame(data)
Using pivot
:
>>> df.pivot(index='instance.task_id.number',
columns='metric.question',
values='metric.question')
metric.question Q1 Q2 Q3 Q4
instance.task_id.number
REQ0510079 Q1 Q2 Q3 Q4
REQ0527568 Q1 Q2 Q3 Q4
Answered By - Corralien
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.