Issue
Is there a way to load a pytorch DataLoader (torch.utils.data.Dataloader
) entirely into my GPU?
Now, I load every batch separately into my GPU.
CTX = torch.device('cuda')
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=0,
)
net = Net().to(CTX)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=LEARNING_RATE)
for epoch in range(EPOCHS):
for inputs, labels in test_loader:
inputs = inputs.to(CTX) # this is where the data is loaded into GPU
labels = labels.to(CTX)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(f'training accuracy: {net.validate(train_loader, device=CTX)}/{len(train_dataset)}')
print(f'validation accuracy: {net.validate(test_loader, device=CTX)}/{len(test_dataset)}')
where the Net.validate()
function is given by
def validate(self, val_loader, device=torch.device('cpu')):
correct = 0
for inputs, labels in val_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = torch.argmax(self(inputs), dim=1)
correct += int(torch.sum(outputs==labels))
return correct
I would like to improve the speed by loading the entire dataset trainloader
into my GPU, instead of loading every batch separately. So, I would like to do something like
train_loader.to(CTX)
Is there an equivalent function for this? Because torch.utils.data.DataLoader
does not have this attribute .to()
.
I work with an NVIDIA GeForce RTX 2060 with CUDA Toolkit 10.2 installed.
Solution
you can put your data of dataset in advance
train_dataset.train_data.to(CTX) #train_dataset.train_data is a Tensor(input data)
train_dataset.train_labels.to(CTX)
for example of minst
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_data = datasets.MNIST(
root='./dataset/minst/',
train=True,
download=False,
transform=transform
)
train_loader = DataLoader(
dataset=train_data,
shuffle=True,
batch_size=batch_size
)
train_data.train_data.to(torch.device("cuda:0")) # put data into GPU entirely
train_data.train_labels.to(torch.device("cuda:0"))
I got this solution by using debugger...
Answered By - visco
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.