Issue
I am trying to perform a grid search on several parameters of a neural network by using the code below:
def create_network(optimizer='rmsprop'):
# Start Artificial Neural Network
network = Sequential()
# Adding the input layer and the first hidden layer
# units = neurons
network.add(Dense(units = 16,
activation = tf.keras.layers.LeakyReLU(alpha=0.3)))
# Adding the second hidden layer
network.add(Dense(units = 16,
activation = tf.keras.layers.LeakyReLU(alpha=0.3)))
# Adding the third hidden layer
network.add(Dense(units = 16,
activation = tf.keras.layers.LeakyReLU(alpha=0.3)))
# Adding the output layer
network.add(Dense(units = 1))
# Compile NN
network.compile(optimizer = optimizer,
loss = 'mean_squared_error',
metrics=['mae', tf.keras.metrics.RootMeanSquaredError()])
# Return compiled network
return network
# Wrap Keras model so it can be used by scikit-learn
ann = KerasRegressor(build_fn=create_network, verbose=0)
# Create hyperparameter space
epoch_values = [10, 25, 50, 100, 150, 200]
batches = [10, 20, 30, 40, 50, 100, 1000]
optimizers = ['rmsprop', 'adam', 'SGD']
neurons = [16, 32, 64, 128, 256]
lr_values = [0.001, 0.01, 0.1, 0.2, 0.3]
# Create hyperparameter options
hyperparameters = dict(optimizer=optimizers, epochs=epoch_values, batch_size=batches, units=neurons,learning_rate=lr_values)
# Create grid search
# cv=5 is the default 5-fold
grid = GridSearchCV(estimator=ann, cv=5, param_grid=hyperparameters)
# Fit grid search
grid_result = grid.fit(X, y)
But I am getting the error:
learning_rate is not a legal parameter
Only the optimizers, epochs, and batch_size work... the other parameters are not recognized in the search.
How can I fix this?
In case it is relevant to know, I will also like to add more parameters to the grid search.
Solution
Currently, you're not instructing the network to use a learning rate, so the scikit-learn
grid search doesn't know how to change it. Explicitly tell the optimizer how to change the learning rate in your create_network
function (same goes for neurons
or any other parameter). Something like this should work:
def create_network(optimizer='rmsprop', neurons=16, learning_rate=0.001):
# Start Artificial Neural Network
network = Sequential()
# Adding the input layer and the first hidden layer
network.add(Dense(units = neurons,
activation = tf.keras.layers.LeakyReLU(alpha=0.3)))
# Adding the second hidden layer
network.add(Dense(units = neurons,
activation = tf.keras.layers.LeakyReLU(alpha=0.3)))
# Adding the third hidden layer
network.add(Dense(units = neurons,
activation = tf.keras.layers.LeakyReLU(alpha=0.3)))
# Adding the output layer
network.add(Dense(units = 1))
###############################################
# Add optimizer with learning rate
if optimizer == 'rmsprop':
opt = tf.keras.optimizers.RMSprop(learning_rate=learning_rate)
elif optimizer == 'adam':
opt = tf.keras.optimizers.Adam(learning_rate=learning_rate)
elif optimizer == 'SGD':
opt = tf.keras.optimizers.SGD(learning_rate=learning_rate)
else:
raise ValueError('optimizer {} unrecognized'.format(optimizer))
##############################################
# Compile NN
network.compile(optimizer = opt,
loss = 'mean_squared_error',
metrics=['mae', tf.keras.metrics.RootMeanSquaredError()])
# Return compiled network
return network
# Wrap Keras model so it can be used by scikit-learn
ann = KerasRegressor(build_fn=create_network, verbose=0)
# Create hyperparameter space
epoch_values = [10, 25, 50, 100, 150, 200]
batches = [10, 20, 30, 40, 50, 100, 1000]
optimizers = ['rmsprop', 'adam', 'SGD']
neuron_list = [16, 32, 64, 128, 256]
lr_values = [0.001, 0.01, 0.1, 0.2, 0.3]
# Create hyperparameter options
hyperparameters = dict(
epochs=epoch_values,
batch_size=batches,
optimizer=optimizers,
neurons=neuron_list,
learning_rate=lr_values)
# Create grid search
# cv=5 is the default 5-fold
grid = GridSearchCV(estimator=ann, cv=5, param_grid=hyperparameters)
# Fit grid search
grid_result = grid.fit(X, y)
A similar modification can be made for neurons
as well or any other parameters related to the network structure. Make sure to match the name of the argument to create_network
with the key in hyperparameters
.
Answered By - TC Arlen
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.