Issue
Is there a way to slice a 2d array in numpy into smaller 2d arrays?
Example
[[1,2,3,4], -> [[1,2] [3,4]
[5,6,7,8]] [5,6] [7,8]]
So I basically want to cut down a 2x4 array into 2 2x2 arrays. Looking for a generic solution to be used on images.
Solution
There was another question a couple of months ago which clued me in to the idea of using reshape
and swapaxes
. The h//nrows
makes sense since this keeps the first block's rows together. It also makes sense that you'll need nrows
and ncols
to be part of the shape. -1
tells reshape to fill in whatever number is necessary to make the reshape valid. Armed with the form of the solution, I just tried things until I found the formula that works.
You should be able to break your array into "blocks" using some combination of reshape
and swapaxes
:
def blockshaped(arr, nrows, ncols):
"""
Return an array of shape (n, nrows, ncols) where
n * nrows * ncols = arr.size
If arr is a 2D array, the returned array should look like n subblocks with
each subblock preserving the "physical" layout of arr.
"""
h, w = arr.shape
assert h % nrows == 0, f"{h} rows is not evenly divisible by {nrows}"
assert w % ncols == 0, f"{w} cols is not evenly divisible by {ncols}"
return (arr.reshape(h//nrows, nrows, -1, ncols)
.swapaxes(1,2)
.reshape(-1, nrows, ncols))
turns c
np.random.seed(365)
c = np.arange(24).reshape((4, 6))
print(c)
[out]:
[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]]
into
print(blockshaped(c, 2, 3))
[out]:
[[[ 0 1 2]
[ 6 7 8]]
[[ 3 4 5]
[ 9 10 11]]
[[12 13 14]
[18 19 20]]
[[15 16 17]
[21 22 23]]]
I've posted an inverse function, unblockshaped
, here, and an N-dimensional generalization here. The generalization gives a little more insight into the reasoning behind this algorithm.
Note that there is also superbatfish's
blockwise_view
. It arranges the
blocks in a different format (using more axes) but it has the advantage of (1)
always returning a view and (2) being capable of handling arrays of any
dimension.
Answered By - unutbu
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.