Issue
this is my first time to post here.
I am a Python-Machine Learning newbie and I've been teaching myself with Scikit-Learn (v 0.22.1) in Jupyter Notebook(v 6.0.3). I would be very glad if you can help me out with this problem.
I copied this code exactly from auto_examples_python/datasets/plot_cv_diabetes.py (a downloadable file from scikit-learn 0.22.1) and this does not run on my Jupyter notebook:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import LassoCV, Lasso
from sklearn.model_selection import GridSearchCV, KFold
X, y = datasets.load_diabetes(return_X_y = True)
X = X[:150]
y = y[:150]
lasso = Lasso(alpha = 1.0, random_state = 0, max_iter = 10000)
alphas = np.logspace(-4, -0.5, 30)
tuned_parameters = [{'alphas': alphas}]
n_folds = 5
clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit = False)
clf.fit(X, y)
It gives me the error:
>ValueError: Invalid parameter alphas for estimator Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=10000,
normalize=False, positive=False, precompute=False, random_state=0,
selection='cyclic', tol=0.0001, warm_start=False). Check the list of available parameters with `estimator.get_params().keys()`.
Also when I do this:
scores = clf.cv_results_['mean_test_score']
scores_std = clf.cv_results_['std_test_score']
plt.figure().set_size_inches(8, 6)
plt.semilogx(alphas, score)
I get:
>AttributeError: 'GridSearchCV' object has no attribute 'cv_results_'
Thank you for your help.
Solution
According to Lasso doc you should use alpha
.
In fact, modifying:
tuned_parameters = [{'alphas': alphas}]
into:
tuned_parameters = [{'alpha': alphas}]
your code should work.
Answered By - sentence
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.