Issue
Pytorch provides a lstsq
function, but the result it returns drastically differs from the numpy's version. Here is an example input and both of their results:
import numpy as np
import torch
a = torch.tensor([[1., 1, 1],
[2, 3, 4],
[3, 5, 2],
[4, 2, 5],
[5, 4, 3]])
b = torch.tensor([[-10., -3],
[ 12, 14],
[ 14, 12],
[ 16, 16],
[ 18, 16]])
a1 = a.clone().numpy()
b1 = b.clone().numpy()
x, r = torch.lstsq(b, a)
x1, res, r1, s = np.linalg.lstsq(b1, a1)
print(f'torch_x: {x}')
print(f'torch_r: {r}\n')
print(f'np_x: {x1}')
print(f'np_res: {res}')
print(f'np_r1(rank): {r1}')
print(f'np_s: {s}')
Output:
torch_x: tensor([[ 2.0000, 1.0000],
[ 1.0000, 1.0000],
[ 1.0000, 2.0000],
[10.9635, 4.8501],
[ 8.9332, 5.2418]])
torch_r: tensor([[-7.4162, -6.7420, -6.7420],
[ 0.2376, -3.0896, 0.1471],
[ 0.3565, 0.5272, 3.0861],
[ 0.4753, -0.3952, -0.4312],
[ 0.5941, -0.1411, 0.2681]])
np_x: [[-0.11452514 -0.10474861 -0.28631285]
[ 0.35913807 0.33719075 0.54070234]]
np_res: [ 5.4269753 10.197526 1.4185953]
np_r1(rank): 2
np_s: [43.057705 5.199417]
What am I missing here?
Solution
torch.lstq(a, b)
solves minX L2∥bX−a∥
while np.linalg.lstsq(a, b)
solves minX L2∥aX−b∥
So change the order of parameters passed.
Here's a sample:
import numpy as np import torch
a = torch.tensor([[1., 1, 1],
[2, 3, 4],
[3, 5, 2],
[4, 2, 5],
[5, 4, 3]])
b = torch.tensor([[-10., -3],
[ 12, 14],
[ 14, 12],
[ 16, 16],
[ 18, 16]])
a1 = a.clone().numpy()
b1 = b.clone().numpy()
x, _ = torch.lstsq(a, b)
x1, res, r1, s = np.linalg.lstsq(b1, a1)
print(f'torch_x: {x[:b.shape[1]]}')
print(f'np_x: {x1}')
Results:
torch_x: tensor([[-0.1145, -0.1047, -0.2863],
[ 0.3591, 0.3372, 0.5407]])
np_x: [[-0.11452514 -0.10474861 -0.28631285]
[ 0.35913807 0.33719075 0.54070234]]
link to torch doc link to numpy doc
And also the returned rank
from numpy.lianalg.lstsq is rank of 1st parameters . To get rank in pytorch use torch.matrix_rank()
function.
Answered By - Girish Dattatray Hegde
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.