Issue
This is to define a custom loss function in Keras. The code is as follows:
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam
def custom_loss_function(y_true, y_pred):
a_numpy_y_true_array = K.eval(y_true)
a_numpy_y_pred_array = K.eval(y_pred)
# some million dollar worth custom loss that needs numpy arrays to be added here...
return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
def build_model():
model= Sequential()
model.add(Dense(16, input_shape=(701, ), activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=custom_loss_function, optimizer=Adam(lr=0.005), metrics=['accuracy'])
return model
model = build_model()
early_stop = EarlyStopping(monitor="val_loss", patience=1)
model.fit(kpca_X, y, epochs=50, validation_split=0.2, callbacks=[early_stop], verbose=False)
The above code returns following error:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1326 try:
-> 1327 return fn(*args)
1328 except errors.OpError as e:
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1305 feed_dict, fetch_list, target_list,
-> 1306 status, run_metadata)
1307
D:\milind.dalvi\personal\_python\Anaconda3\lib\contextlib.py in __exit__(self, type, value, traceback)
88 try:
---> 89 next(self.gen)
90 except StopIteration:
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
465 compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466 pywrap_tensorflow.TF_GetCode(status))
467 finally:
InvalidArgumentError: You must feed a value for placeholder tensor 'dense_84_target' with dtype float and shape [?,?]
[[Node: dense_84_target = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
So anybody knows how we could convert y_true
and y_pred
which is Tensor("dense_84_target:0", shape=(?, ?), dtype=float32)
into numpy array
EDIT: --------------------------------------------------------
Basically what I expect to write in loss function is something as follows:
def custom_loss_function(y_true, y_pred):
classifieds = []
for actual, predicted in zip(y_true, y_pred):
if predicted == 1:
classifieds.append(actual)
classification_score = abs(classifieds.count(0) - classifieds.count(1))
return SOME_MAGIC_FUNCTION_TO_CONVERT_INT_TO_TENSOR(classification_score)
Solution
The loss function is compiled with the model. At compile time, y_true
and y_pred
are only placeholder tensors, so they do not have a value yet and can therefore not be evaluated. This is why you get the error message.
Your loss function should use Keras tensors, not the numpy arrays they evaluate to. If you need to use additional numpy arrays, convert them to tensors via the variable
method of keras.backend
(Keras Backend Documentation).
Edit:
You will still need to stay inside the Keras function space to make your loss work. If this is the concrete loss function that you want to implement, and assuming that your values are in {0,1}, you can try something like this:
import keras.backend as K
def custom_loss_function(y_true, y_pred):
y_true = y_true*2 - K.ones_like(y_true) # re-codes values of y_true from {0,1} to {-1,+1}
y_true = y_true*y_pred # makes the values that you are not interested in equal to zero
classification_score = K.abs(K.sum(y_true))
Answered By - KiraMichiru
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.