Issue
My code is about to create an H5 file
for Each and Every video in the folder, Extracting the feature from the video and stored into the H5 file
.
in Below shown code
extraction feature from multi videos
and all the features are stored in the single H5 file
H5 file order:
video1:
- feature
video2:
- feature
issues:
- How to create an H5 file for every video after a process is done
Code: Create_data.py
import argparse
from utils.generate_dataset import Generate_Dataset
parser = argparse.ArgumentParser(""Welcome you to fraction)
# Dataset options
parser.add_argument('--input', '--split', type=str, help="input video")
parser.add_argument('--output', type=str, default='', help="out data")
args = parser.parse_args()
if __name__ == "__main__":
gen = Generate_Dataset(args.input, args.output)
gen.generate_dataset()
gen.h5_file.close()
Code: Generate_Dataset.py :
import os
from networks.CNN import ResNet
from utils.KTS.cpd_auto import cpd_auto
from tqdm import tqdm
import math
import cv2
import numpy as np
import h5py
import numpy as np
class Generate_Dataset:
def __init__(self, video_path, save_path):
self.resnet = ResNet()
self.dataset = {}
self.video_list = []
self.video_path = ''
self.h5_file = h5py.File(save_path, 'w')
self._set_video_list(video_path)
def _set_video_list(self, video_path):
# import pdb;pdb.set_trace()
if os.path.isdir(video_path):
self.video_path = video_path
fileExt = r".mp4",".avi"
self.video_list = [_ for _ in os.listdir(video_path) if _.endswith(fileExt)]
self.video_list.sort()
else:
self.video_path = ''
self.video_list.append(video_path)
for idx, file_name in enumerate(self.video_list):
self.dataset['video_{}'.format(idx+1)] = {}
self.h5_file.create_group('video_{}'.format(idx+1))
def _extract_feature(self, frame):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.resize(frame, (224, 224))
res_pool5 = self.resnet(frame)
frame_feat = res_pool5.cpu().data.numpy().flatten()
return frame_feat
def _get_change_points(self, video_feat, n_frame, fps):
n = n_frame / fps
m = int(math.ceil(n/2.0))
K = np.dot(video_feat, video_feat.T)
change_points, _ = cpd_auto(K, m, 1)
change_points = np.concatenate(([0], change_points, [n_frame-1]))
temp_change_points = []
for idx in range(len(change_points)-1):
segment = [change_points[idx], change_points[idx+1]-1]
if idx == len(change_points)-2:
segment = [change_points[idx], change_points[idx+1]]
temp_change_points.append(segment)
change_points = np.array(list(temp_change_points))
# temp_n_frame_per_seg = []
# for change_points_idx in range(len(change_points)):
# n_frame = change_points[change_points_idx][1] - change_points[change_points_idx][0]
# temp_n_frame_per_seg.append(n_frame)
# n_frame_per_seg = np.array(list(temp_n_frame_per_seg))
# print(change_points)
arr = change_points
list1 = arr.tolist()
list2 = list1[-1].pop(1) #pop [-1]value
print(list2)
print(list1)
print("****************") # [-1][-1] value find and divided by 15
cps_m = math.floor(arr[-1][1]/15)
list1[-1].append(cps_m) #append to list
print(list1)
print("****************") #list to nd array convertion
arr = np.asarray(list1)
print(arr)
arrmul = arr * 15
print(arrmul)
print("****************")
# print(type(change_points))
# print(n_frame_per_seg)
# print(type(n_frame_per_seg))
median_frame = []
for x in arrmul:
print(x)
med = np.mean(x)
print(med)
int_array = med.astype(int)
median_frame.append(int_array)
print(median_frame)
# print(type(int_array))
return arrmul
# TODO : save dataset
def _save_dataset(self):
pass
def generate_dataset(self):
print('[INFO] CNN processing')
for video_idx, video_filename in enumerate(self.video_list):
video_path = video_filename
if os.path.isdir(self.video_path):
video_path = os.path.join(self.video_path, video_filename)
video_basename = os.path.basename(video_path).split('.')[0]
video_capture = cv2.VideoCapture(video_path)
fps = video_capture.get(cv2.CAP_PROP_FPS)
n_frames = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_list = []
picks = []
video_feat = None
video_feat_for_train = None
for frame_idx in tqdm(range(n_frames-1)):
success, frame = video_capture.read()
if frame_idx % 15 == 0:
if success:
frame_feat = self._extract_feature(frame)
picks.append(frame_idx)
if video_feat_for_train is None:
video_feat_for_train = frame_feat
else:
video_feat_for_train = np.vstack((video_feat_for_train, frame_feat))
if video_feat is None:
video_feat = frame_feat
else:
video_feat = np.vstack((video_feat, frame_feat))
else:
break
video_capture.release()
arrmul = self._get_change_points(video_feat, n_frames, fps)
self.h5_file['video_{}'.format(video_idx+1)]['features'] = list(video_feat_for_train)
self.h5_file['video_{}'.format(video_idx+1)]['picks'] = np.array(list(picks))
self.h5_file['video_{}'.format(video_idx+1)]['n_frames'] = n_frames
self.h5_file['video_{}'.format(video_idx+1)]['fps'] = fps
self.h5_file['video_{}'.format(video_idx + 1)]['video_name'] = video_filename.split('.')[0]
self.h5_file['video_{}'.format(video_idx+1)]['change_points'] = arrmul
Expected results :
Folder: video
video_1:
video1.mp4
video2.mp4
Files are in this structure, now read video files and create separate H5 files after the process is over.
Solution
You need to :
- remove
self.h5_file = h5py.File(save_path, 'w')
from__init__()
- remove
self.h5_file.create_group('video_{}'.format(idx+1))
from_set_video_list()
- remove
gen.h5_file.close()
frommain()
- change last block of
generate_dataset()
into something like:
.
video_capture.release()
arrmul = self._get_change_points(video_feat, n_frames, fps)
h5_dir = os.path.dirname(video_path)
h5_full_path = os.path.join(h5_dir, 'video_{}'.format(video_idx+1))
with h5py.File(h5_full_path, 'w') as h5_file:
h5_file['features'] = list(video_feat_for_train)
h5_file['picks'] = np.array(list(picks))
h5_file['n_frames'] = n_frames
h5_file['fps'] = fps
h5_file['video_name'] = video_filename.split('.')[0]
h5_file['change_points'] = arrmul
Please note that your inner video file indices and actual video file name numbers may not match. So I suggest to change
h5_dir = os.path.dirname(video_path)
h5_full_path = os.path.join(h5_dir, 'video_{}'.format(video_idx+1))
from above into
h5_full_path = video_path.split('.')[0] + '.h5'
This will create features file with the name matched to the video file.
Answered By - igrinis
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.