Issue
I have a dataframe of daily temperature variation with time
time temp temp_mean
00:01:51.57 185.94 185.94
00:01:52.54 187.48 186.71
00:01:53.51 197.85 190.4233333
00:01:54.49 195.71 191.745
00:01:55.46 197.22 192.84
00:01:56.43 187.33 191.9216667
00:01:57.41 194.18 192.2442857
00:01:58.38 199.9 193.20125
00:01:59.35 184.23 192.2044444
00:02:00.33 201.34 193.118
00:02:01.30 200.12 193.7545455
00:02:02.27 199.13 194.2025
00:02:03.24 187.47 193.6846154
00:02:04.22 187.65 193.2535714
00:02:05.19 195.59 193.4093333
00:02:06.17 188.7 193.115
00:02:07.14 196.16 193.2941176
00:02:08.11 191.17 193.1761111
00:02:09.08 198.62 193.4626316
00:02:10.06 190.79 193.329
00:02:11.03 193.35 193.33
00:02:12.00 199.36 193.6040909
00:02:12.98 190.76 193.4804348
00:02:13.95 205.16 193.9670833
00:02:14.92 194.89 194.004
00:02:15.90 185.3 193.6692308
like this. (12000+ rows) I want to plot time vs temp as a line plot, with hourly ticks on x-axis(1 hr interval). But somehow I couldn't assign x ticks with proper frequency.
fig, ax = plt.subplots()
ax.plot(data['time'], data['temp'])
ax.plot(data['time'], data['temp_mean'],color='red')
xformatter = mdates.DateFormatter('%H:%M')
xlocator = mdates.HourLocator(interval = 1)
## Set xtick labels to appear every 15 minutes
ax.xaxis.set_major_locator(xlocator)
## Format xtick labels as HH:MM
ax.xaxis.set_major_formatter(xformatter)
fig.autofmt_xdate()
ax.tick_params(axis='x', rotation=45)
plt.show()
Here xticks seems to be crowded and overlapping, but I need ticks from 0:00
to 23:00
with one hour interval.
What should I do ?
Solution
- Convert the
'time'
column to adatetime dtype
withpd.to_datetime
, and then extract the time component with the.dt
accessor.- See python datetime format codes to specify the
format=...
string.
- See python datetime format codes to specify the
- Plot with
pandas.DataFrame.plot
- Tested in
python 3.8.12
,pandas 1.3.3
,matplotlib 3.4.3
import pandas as pd
# sample data
data = {'time': ['00:01:51.57', '00:01:52.54', '00:01:53.51', '00:01:54.49', '00:01:55.46', '00:01:56.43', '00:01:57.41', '00:01:58.38', '00:01:59.35', '00:02:00.33', '00:02:01.30', '00:02:02.27', '00:02:03.24', '00:02:04.22', '00:02:05.19', '00:02:06.17', '00:02:07.14', '00:02:08.11', '00:02:09.08', '00:02:10.06', '00:02:11.03', '00:02:12.00', '00:02:12.98', '00:02:13.95', '00:02:14.92', '00:02:15.90'],
'temp': [185.94, 187.48, 197.85, 195.71, 197.22, 187.33, 194.18, 199.9, 184.23, 201.34, 200.12, 199.13, 187.47, 187.65, 195.59, 188.7, 196.16, 191.17, 198.62, 190.79, 193.35, 199.36, 190.76, 205.16, 194.89, 185.3],
'temp_mean': [185.94, 186.71, 190.4233333, 191.745, 192.84, 191.9216667, 192.2442857, 193.20125, 192.2044444, 193.118, 193.7545455, 194.2025, 193.6846154, 193.2535714, 193.4093333, 193.115, 193.2941176, 193.1761111, 193.4626316, 193.329, 193.33, 193.6040909, 193.4804348, 193.9670833, 194.004, 193.6692308]}
df = pd.DataFrame(data)
# convert column to datetime and extract time component
df.time = pd.to_datetime(df.time, format='%H:%M:%S.%f').dt.time
# plot
ax = df.plot(x='time', color=['tab:blue', 'tab:red'])
Answered By - Trenton McKinney
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.