Issue
I have a code to detect and identify the car number plate and convert the image into text using tesseract. I am using openCV to localise the number plate. The problem that I am facing is that tesseract is not accurately identifying the number. Is there any way I can improve the tesseract performance?
My code (which I downloaded from Internet) is:
import numpy as np
import cv2
# from copy import deepcopy
from PIL import Image
import pytesseract as tess
# plate = 0
def preprocess(img):
# print ('preprocessing image')
# cv2.imshow("Input", img)
imgBlurred = cv2.GaussianBlur(img, (5, 5), 0)
gray = cv2.cvtColor(imgBlurred, cv2.COLOR_BGR2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_8U, 1, 0, ksize=3)
cv2.imshow("Sobel",sobelx)
cv2.waitKey(0)
ret2, threshold_img = cv2.threshold(sobelx, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
cv2.imshow("Threshold",threshold_img)
cv2.waitKey(0)
return threshold_img
def cleanPlate(plate):
# print ("CLEANING PLATE. . .")
gray = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
thresh= cv2.dilate(gray, kernel, iterations=1)
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
im1, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if contours:
areas = [cv2.contourArea(c) for c in contours]
max_index = np.argmax(areas)
max_cnt = contours[max_index]
max_cntArea = areas[max_index]
x, y, w, h = cv2.boundingRect(max_cnt)
if not ratioCheck(max_cntArea, w, h):
return plate, None
cleaned_final = thresh[y:y + h, x:x + w]
# cv2.imshow("Function Test",cleaned_final)
return cleaned_final, [x, y, w, h]
else:
return plate, None
def extract_contours(threshold_img):
# print ('extracting contours')
element = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(17, 3))
morph_img_threshold = threshold_img.copy()
cv2.morphologyEx(src=threshold_img, op=cv2.MORPH_CLOSE, kernel=element, dst=morph_img_threshold)
cv2.imshow("Morphed", morph_img_threshold)
cv2.waitKey(0)
im2, contours, hierarchy = cv2.findContours(morph_img_threshold, mode=cv2.RETR_EXTERNAL,
method=cv2.CHAIN_APPROX_NONE)
return contours
def ratioCheck(area, width, height):
# print ('checking ratio')
ratio = float(width) / float(height)
if ratio < 1:
ratio = 1 / ratio
aspect = 4.7272
min = 15 * aspect * 15 # minimum area
max = 125 * aspect * 125 # maximum area
rmin = 3
rmax = 6
if (area < min or area > max) or (ratio < rmin or ratio > rmax):
return False
return True
def isMaxWhite(plate):
# print ('is Max white')
avg = np.mean(plate)
if (avg >= 115):
return True
else:
return False
def validateRotationAndRatio(rect):
# print( 'validate the rotation and ratio')
(x, y), (width, height), rect_angle = rect
if (width > height):
angle = -rect_angle
else:
angle = 90 + rect_angle
if angle > 15:
return False
if height == 0 or width == 0:
return False
area = height * width
if not ratioCheck(area, width, height):
return False
else:
return True
def cleanAndRead(img, contours):
# print ('clean and read')
# count=0
for i, cnt in enumerate(contours):
min_rect = cv2.minAreaRect(cnt)
if validateRotationAndRatio(min_rect):
x, y, w, h = cv2.boundingRect(cnt)
plate_img = img[y:y + h, x:x + w]
if (isMaxWhite(plate_img)):
# count+=1
clean_plate, rect = cleanPlate(plate_img)
if rect:
x1, y1, w1, h1 = rect
x, y, w, h = x + x1, y + y1, w1, h1
cv2.imshow("Cleaned Plate", clean_plate)
cv2.waitKey(0)
plate_im = Image.fromarray(clean_plate)
plate_im.save('donald1.png')
text = tess.image_to_string(plate_im, lang='eng')
# print text
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow("Detected Plate", img)
cv2.waitKey(0)
return text
numberplate = 0
img = cv2.imread("car_number_plate.jpg")
threshold_img = preprocess(img)
contours = extract_contours(threshold_img)
# if len(contours)!=0:
# print len(contours) #Test
# cv2.drawContours(img, contours, -1, (0,255,0), 1)
# cv2.imshow("Contours",img)
# cv2.waitKey(0)
plate = cleanAndRead(img, contours)
print ('plate information: ', plate)
If my number plate is: MH01AV8866
It will be recognised as MH01AY8866
Any suggestion will be appreciated. Let me know if any other information is required too.
Solution
You are using tesseract as a general model for your problem you can tune your model for that you need to generate synthetic data for your number plates with this
https://github.com/Belval/TextRecognitionDataGenerator
and then you can tune your model using the steps provided
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00---Finetune
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00
I've tuned the tesseract on synthetic data and it works like a charm, tried CNN models and tesseract both and tesseract trains better with lesser data and gives better performance.
Answered By - Yash Kumar Atri
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.