Issue
I have multivariate time series data, collected every 5 seconds for a few days.
This includes columns of standardized data, which looks like below (few example values). "P1"
is the label-column.
|-------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|----------------------|----------------------|
| | P1 | P2 | P3 | AI_T_MOWA | AI_T_OEL | AI_T_KAT_EIN | AI_T_KAT_AUS | P-Oel | P-Motorwasser |
|-------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|----------------------|----------------------|
| 0 | 0.8631193380009695 | 0.8964414887167506 | 0.8840858759128901 | -0.523186057460264 | -0.6599697679790338 | 0.8195843978382326 | 0.6536355179773343 | 2.0167991331023862 | 1.966765280217274 |
|-------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|----------------------|----------------------|
| 1 | 2.375731412346451 | 2.416190921505275 | 2.3921080971495456 | 1.2838015319452019 | 0.6783070711474897 | 2.204838829646018 | 2.250184559609546 | 2.752702514412287 | 2.7863834647854797 |
|-------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|----------------------|----------------------|
| 2 | 2.375731412346451 | 2.416190921505275 | 2.3921080971495456 | 1.2838015319452019 | 1.2914092683827934 | 2.2484584825559955 | 2.2968465552769324 | 2.4571347629025726 | 2.743245665597679 |
|-------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|----------------------|----------------------|
| 3 | 2.3933199248388406 | 2.416190921505275 | 2.3753522946913606 | 1.2838015319452019 | 1.5485166414169536 | 2.2557284247076588 | 2.3039344533529906 | 2.31839887954087 | 2.7863834647854797 |
|-------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|----------------------|----------------------|
Corresponding graphs of the standardized data show nothing out of the ordinary.
I have split this data into train, validation and test sets, so that my training data is the first 70% of overall data, the validation are the next 20% and the test are the last 10%.
train_df_st = df[0:int(self._n*0.7)]
val_df_st = df[int(self._n*0.7):int(self._n*0.9)]
test_df_st = df[int(self._n*0.9):]
I then generate windows through the WindowGenerator class from tensorflows tutorial like here.
Using a simple Baseline model that predicts the ouput the same as the input I get actual predictions, so I assume my generated windows are fine. The shapes of my batches are
Input shape: (32, 24, 193)
Output shape: (32, 24, 1)
Now to the tricky part: I obviously want to use another model for better predictions. I have tried out using Conv1D using only one column and that worked, so I wanted to try it with this as well. My windows look like:
CONV_WIDTH = 3
LABEL_WIDTH = 24
INPUT_WIDTH = LABEL_WIDTH + (CONV_WIDTH - 1)
conv_window = WindowGenerator(
input_width=INPUT_WIDTH,
label_width=LABEL_WIDTH,
shift=1,
train_df=train_df_st, val_df=val_df_st, test_df=test_df_st, label_columns=["P1"])
Total window size: 25
Input indices: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
Label indices: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]
Label column name(s): ['P1']
I then define my model and use the compile_and_fit()
method as used here.
conv_model = tf.keras.Sequential([
tf.keras.layers.Conv1D(filters=32,
kernel_size=(CONV_WIDTH,),
activation='relu'),
tf.keras.layers.Dense(units=32, activation='relu'),
tf.keras.layers.Dense(units=1),
])
MAX_EPOCHS = 20
def compile_and_fit(model, window, patience=2):
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience,
mode='min')
model.compile(loss=tf.losses.MeanSquaredError(),
optimizer=tf.optimizers.Adam(),
metrics=[tf.metrics.MeanAbsoluteError()])
history = model.fit(window.train, epochs=MAX_EPOCHS,
validation_data=window.val,
callbacks=[early_stopping])
return history
history = compile_and_fit(window=conv_window, model=conv_model)
Input and Output shapes are:
Input shape: (32, 26, 193)
Output shape: (32, 24, 1)
My final output however is only two epochs that show nan as mean absolute error as well as loss:
Epoch 1/20
382/382 [==============================] - 2s 4ms/step - loss: nan - mean_absolute_error: nan - val_loss: nan - val_mean_absolute_error: nan
Epoch 2/20
382/382 [==============================] - 1s 3ms/step - loss: nan - mean_absolute_error: nan - val_loss: nan - val_mean_absolute_error: nan
And if I plot some example windows I see that I get labels, but no predictions:
I have tried implementing yet another model (LSTM) with slightly different windows, but a similar approach, but I get the same NaN's, so I believe it is not my models problem, but something in my data?.
Solution
Turns out my standarization of the data was faulty, normalizing it, I get actual values instead of NaN.
Answered By - ronjafuchs
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.