Issue
I have the following dataset
Date Type Label
2020-03-20 A 1
2020-03-20 A 0
2020-03-19 B 1
2020-03-17 A 1
2020-03-15 C 0
2020-03-19 A 0
2020-03-20 D 1
2020-03-20 A 1
that I would like to plot with normalised values in a multiple lines plot. The code below plots the different lines through time
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, figsize=[10,6])
(df.loc[df.Label.eq(1),].groupby(["Date","Type"]).agg({"Type":"count"})
.unstack(1).droplevel(0,axis=1)
.fillna(method="ffill")
.plot(ax=ax, kind="line")
)
but when I try to apply normalisation
column_norm=['Type']
df[column_norm] = df[column_norm].apply(lambda x: (x - x.min()) / (x.max() - x.min()))
it fails, returning an error:
TypeError: unsupported operand type(s) for -: 'str' and 'str'
when I calculate min and max.
Can you please tell me how to get a plot with y axis normalised to 1?
Solution
Based on the small sample of data and the way that you are using count
and fillna
in the code you have shared, I figure that you are wanting to compute the normalized/rescaled cumulative sum of the count labels equal to one through time. Here is a step-by-step example of how to do this using a larger sample dataset:
import numpy as np # v 1.19.2
import pandas as pd # v 1.1.3
# Create sample dataset
rng = np.random.default_rng(seed=1) # random number generator
dti = pd.date_range('2020-01-01', '2020-01-31', freq='D')
size = 2*dti.size
dfraw = pd.DataFrame(data=dict(Type = rng.choice(list('ABCD'), size=size),
Label = rng.choice([0,1], size=size),
Date = rng.choice(dti, size=size)))
dfraw.head()
You can simplify the reshaping of the dataframe by using the pivot_table
method. Notice how the df.Label.eq(1)
mask and the aggregation function count
are replaced here by aggfunc='sum'
which takes advantage of the fact that Label
is numeric:
dfp = dfraw.pivot_table(values='Label', index='Date', columns='Type', aggfunc='sum')
dfp.head()
Then the normalized/rescaled cumulative sum can be computed for each variable using the apply
method:
dfcs = dfp.apply(lambda x: x.cumsum()/x.sum(), axis=0)
dfcs.head()
Finally, the NaN values can be filled to make the lines in the plot continuous:
df = dfcs.fillna(method='ffill').fillna(value=0)
df.head()
ax = df.plot(figsize=(10,6))
# Format the tick labels using the default tick locations and format legend
ticks = ax.get_xticks()
ticklabels = pd.to_datetime(ticks, unit='D').strftime('%d-%b')
ax.set_xticks(ticks)
ax.set_xticklabels(ticklabels, rotation=0, ha='center')
ax.legend(title='Type', frameon=False);
Answered By - Patrick FitzGerald
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.