Issue
I have two dataframes, something like this:
df1 = pd.DataFrame({
'Identity': [3, 4, 5, 6, 7, 8, 9],
'Value': [1, 2, 3, 4, 5, 6, 7],
'Notes': ['a', 'b', 'c', 'd', 'e', 'f', 'g'],
})
df2 = pd.DataFrame({
'Identity': [4, 8],
'Value': [0, 128],
})
In[3]: df1
Out[3]:
Identity Value Notes
0 3 1 a
1 4 2 b
2 5 3 c
3 6 4 d
4 7 5 e
5 8 6 f
6 9 7 g
In[4]: df2
Out[4]:
Identity Value
0 4 0
1 8 128
I'd like to use df2 to overwrite df1 but only where values exist in df2, so I end up with:
Identity Value Notes
0 3 1 a
1 4 0 b
2 5 3 c
3 6 4 d
4 7 5 e
5 8 128 f
6 9 7 g
I've been searching through all the various merge, combine, join functions etc, but I can't seem to find one that does what I want. Is there a simple way of doing this?
Solution
Use:
df1['Value'] = df1['Identity'].map(df2.set_index('Identity')['Value']).fillna(df1['Value'])
Or try reset_index
with reindex
and set_index
with fillna
:
df1['Value'] = df2.set_index('Identity').reindex(df1['Identity'])
.reset_index(drop=True)['Value'].fillna(df1['Value'])
>>> df1
Identity Value Notes
0 3 1.0 a
1 4 0.0 b
2 5 3.0 c
3 6 4.0 d
4 7 5.0 e
5 8 128.0 f
6 9 7.0 g
>>>
This fills missing rows in df2
with NaN
and fills the NaN
s with df1
values.
Answered By - U12-F̉͋̅̾̇orward
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.