Issue
I've recently reviewed an interesting implementation for convolutional text classification. However all TensorFlow code I've reviewed uses a random (not pre-trained) embedding vectors like the following:
with tf.device('/cpu:0'), tf.name_scope("embedding"):
W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
Does anybody know how to use the results of Word2vec or a GloVe pre-trained word embedding instead of a random one?
Solution
There are a few ways that you can use a pre-trained embedding in TensorFlow. Let's say that you have the embedding in a NumPy array called embedding
, with vocab_size
rows and embedding_dim
columns and you want to create a tensor W
that can be used in a call to tf.nn.embedding_lookup()
.
Simply create
W
as atf.constant()
that takesembedding
as its value:W = tf.constant(embedding, name="W")
This is the easiest approach, but it is not memory efficient because the value of a
tf.constant()
is stored multiple times in memory. Sinceembedding
can be very large, you should only use this approach for toy examples.Create
W
as atf.Variable
and initialize it from the NumPy array via atf.placeholder()
:W = tf.Variable(tf.constant(0.0, shape=[vocab_size, embedding_dim]), trainable=False, name="W") embedding_placeholder = tf.placeholder(tf.float32, [vocab_size, embedding_dim]) embedding_init = W.assign(embedding_placeholder) # ... sess = tf.Session() sess.run(embedding_init, feed_dict={embedding_placeholder: embedding})
This avoid storing a copy of
embedding
in the graph, but it does require enough memory to keep two copies of the matrix in memory at once (one for the NumPy array, and one for thetf.Variable
). Note that I've assumed that you want to hold the embedding matrix constant during training, soW
is created withtrainable=False
.If the embedding was trained as part of another TensorFlow model, you can use a
tf.train.Saver
to load the value from the other model's checkpoint file. This means that the embedding matrix can bypass Python altogether. CreateW
as in option 2, then do the following:W = tf.Variable(...) embedding_saver = tf.train.Saver({"name_of_variable_in_other_model": W}) # ... sess = tf.Session() embedding_saver.restore(sess, "checkpoint_filename.ckpt")
Answered By - mrry
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.