Issue
I was experimenting with the kaggle.com Titanic data set (data on every person on the Titanic) and came up with a gender breakdown like this:
df = pd.DataFrame({'sex': ['male'] * 577 + ['female'] * 314})
gender = df.sex.value_counts()
gender
male 577
female 314
I would like to find out the percentage of each gender on the Titanic.
My approach is slightly less than ideal:
from __future__ import division
pcts = gender / gender.sum()
pcts
male 0.647587
female 0.352413
Is there a better (more idiomatic) way?
Solution
This function is implemented in pandas, actually even in value_counts(). No need to calculate :)
just type:
df.sex.value_counts(normalize=True)
which gives exactly the desired output.
Please note that value_counts() excludes NA values, so numbers might not add up to 1. See here: http://pandas-docs.github.io/pandas-docs-travis/generated/pandas.Series.value_counts.html (A column of a DataFrame is a Series)
Answered By - fanfabbb
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.