Issue
I am writing a neural network to take the Mel frequency coefficients as inputs and then run the model. My dataset contains 100 samples - each sample is an array of 12 values corresponding to the coefficients. After splitting this data into train and test sets, I have created the X input corresponding to the array and the y input corresponding to the label.
Data array containing the coefficients
Here is a small sample of my data containing 5 elements in the X_train array:
['[107.59366 -14.153783 24.799461 -8.244417 20.95272\n -4.375943 12.77285 -0.92922235 3.9418116 7.3581047\n -0.30066165 5.441765 ]' '[ 96.49664 2.0689797 21.557552 -32.827045 7.348135 -23.513977\n 7.9406714 -16.218931 10.594619 -21.4381 0.5903044 -10.569035 ]' '[105.98041 -2.0483367 12.276348 -27.334534 6.8239 -23.019623\n 7.5176797 -21.884727 11.349695 -22.734652 3.0335162 -11.142375 ]' '[ 7.73094559e+01 1.91073620e+00 6.72225571e+00 -2.74525508e-02\n 6.60858107e+00 5.99264860e-01 1.96265772e-01 -3.94772577e+00\n 7.46383286e+00 5.42239428e+00 1.21432066e-01 2.44894314e+00]']
When I create the Neural network, I want to use the 12 coefficients as an input for the network. In order to do this, I need to use each row of my X_train dataset that contains these arrays as the input. However, when I try to consider the array index as an input it gives me shape errors when trying to fit the model. My model is as follows:
def build_model_graph():
model = Sequential()
model.add(Input(shape=(12,)))
model.add(Dense(12))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('relu'))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
# Compile the model
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')
return model
Here, I want to use every row of the X_train array as an input which would correspond to the shape(12,). When I use something like this:
num_epochs = 50
num_batch_size = 32
model.fit(x_train, y_train, batch_size=num_batch_size, epochs=num_epochs,
validation_data=(x_test, y_test), verbose=1)
I get an error for the shape which makes sense to me. For reference, the error is as follows:
ValueError: Exception encountered when calling layer "sequential_20" (type Sequential).
Input 0 of layer "dense_54" is incompatible with the layer: expected min_ndim=2, found ndim=1. Full shape received: (None,)
But I am not exactly sure how I can extract the array of 12 coefficients present at each index of the X_train and then use it in the model input. Indexing the x_train and y_train did not work either. If anyone could point me in a relevant direction, it would be extremely helpful. Thanks!
Edit: My code for the dataframe is as follows:
clapdf = pd.read_csv("clapsdf.csv")
clapdf.drop('Unnamed: 0', inplace=True, axis=1)
clapdf.head()
nonclapdf = pd.read_csv("nonclapsdf.csv")
nonclapdf.drop('Unnamed: 0', inplace=True, axis=1)
sound_df = clapdf.append(nonclapdf)
sound_df.head()
d=sound_data.tolist()
df=pd.DataFrame(data=d)
data = df[0].to_numpy()
print("Before-->", data.shape)
dat = np.array([np.array(d) for d in data])
print('After-->', dat.shape)
Here, the shape remains the same as the values of each of the 80 samples are not in a comma separated format but instead in the form of a series.
Solution
If your data looks like this:
samples = 2
features = 12
x_train = tf.random.normal((samples, 1, features))
tf.Tensor(
[[[-2.5988803 -0.629626 -0.8306641 -0.78226614 0.88989156
-0.3851106 -0.66053045 1.0571191 -0.59061646 -1.1602987
0.69124466 -0.04354193]]
[[-0.86917496 2.2923143 -0.05498986 -0.09578358 0.85037625
-0.54679644 -1.2213608 -1.3766612 0.35416105 -0.57801914
-0.3699728 0.7884727 ]]], shape=(2, 1, 12), dtype=float32)
You will have to reshape it to (2, 12)
in order to fit your model with the input shape (batch_size, 12)
:
import tensorflow as tf
def build_model_graph():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Input(shape=(12,)))
model.add(tf.keras.layers.Dense(12))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dense(10))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dense(2))
model.add(tf.keras.layers.Activation('softmax'))
# Compile the model
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')
return model
model = build_model_graph()
samples = 2
features = 12
x_train = tf.random.normal((samples, 1, features))
x_train = tf.reshape(x_train, (samples, features))
y = tf.random.uniform((samples, 1), maxval=2, dtype=tf.int32)
y_train = tf.keras.utils.to_categorical(y, 2)
model.fit(x_train, y_train, batch_size=1, epochs=2)
Also, you usually need to convert your labels to one-hot encoded vectors if you plan to use categorical_crossentropy
.
y_train
looks like this:
[[0. 1.]
[1. 0.]]
Update 1: If your data is coming from a dataframe, try something like this:
import numpy as np
import pandas as pd
d = {'features': [[0.18525402, 0.92130125, 0.2296906, 0.75818471, 0.69813222, 0.47147329,
0.03560711, 0.06583931, 0.90921289, 0.76002148, 0.50413995, 0.36099004],
[0.18525402, 0.92130125, 0.2296906, 0.75818471, 0.69813222, 0.47147329,
0.03560711, 0.06583931, 0.90921289, 0.76002148, 0.50413995, 0.36099004]]}
df = pd.DataFrame(data=d)
data = df['features'].to_numpy()
print('Before -->', data.shape)
data = np.array([np.array(d) for d in data])
print('After -->', data.shape)
Before --> (2,)
After --> (2, 12)
Answered By - AloneTogether
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.