Issue
The standard library in 3.7 can recursively convert a dataclass into a dict (example from the docs):
from dataclasses import dataclass, asdict
from typing import List
@dataclass
class Point:
x: int
y: int
@dataclass
class C:
mylist: List[Point]
p = Point(10, 20)
assert asdict(p) == {'x': 10, 'y': 20}
c = C([Point(0, 0), Point(10, 4)])
tmp = {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}
assert asdict(c) == tmp
I am looking for a way to turn a dict back into a dataclass when there is nesting. Something like C(**tmp)
only works if the fields of the data class are simple types and not themselves dataclasses. I am familiar with [jsonpickle][1], which however comes with a prominent security warning.
EDIT:
Answers have suggested the following libraries:
- dacite
- mashumaro (I used for a while, works well but I quickly ran into tricky corner cases)
- pydantic (works very well, excellent documentation and fewer corner cases) [1]: https://jsonpickle.github.io/
Solution
Below is the CPython implementation of asdict
– or specifically, the internal recursive helper function _asdict_inner
that it uses:
# Source: https://github.com/python/cpython/blob/master/Lib/dataclasses.py
def _asdict_inner(obj, dict_factory):
if _is_dataclass_instance(obj):
result = []
for f in fields(obj):
value = _asdict_inner(getattr(obj, f.name), dict_factory)
result.append((f.name, value))
return dict_factory(result)
elif isinstance(obj, tuple) and hasattr(obj, '_fields'):
# [large block of author comments]
return type(obj)(*[_asdict_inner(v, dict_factory) for v in obj])
elif isinstance(obj, (list, tuple)):
# [ditto]
return type(obj)(_asdict_inner(v, dict_factory) for v in obj)
elif isinstance(obj, dict):
return type(obj)((_asdict_inner(k, dict_factory),
_asdict_inner(v, dict_factory))
for k, v in obj.items())
else:
return copy.deepcopy(obj)
asdict
simply calls the above with some assertions, and dict_factory=dict
by default.
How can this be adapted to create an output dictionary with the required type-tagging, as mentioned in the comments?
1. Adding type information
My attempt involved creating a custom return wrapper inheriting from dict
:
class TypeDict(dict):
def __init__(self, t, *args, **kwargs):
super(TypeDict, self).__init__(*args, **kwargs)
if not isinstance(t, type):
raise TypeError("t must be a type")
self._type = t
@property
def type(self):
return self._type
Looking at the original code, only the first clause needs to be modified to use this wrapper, as the other clauses only handle containers of dataclass
-es:
# only use dict for now; easy to add back later
def _todict_inner(obj):
if is_dataclass_instance(obj):
result = []
for f in fields(obj):
value = _todict_inner(getattr(obj, f.name))
result.append((f.name, value))
return TypeDict(type(obj), result)
elif isinstance(obj, tuple) and hasattr(obj, '_fields'):
return type(obj)(*[_todict_inner(v) for v in obj])
elif isinstance(obj, (list, tuple)):
return type(obj)(_todict_inner(v) for v in obj)
elif isinstance(obj, dict):
return type(obj)((_todict_inner(k), _todict_inner(v))
for k, v in obj.items())
else:
return copy.deepcopy(obj)
Imports:
from dataclasses import dataclass, fields, is_dataclass
# thanks to Patrick Haugh
from typing import *
# deepcopy
import copy
Functions used:
# copy of the internal function _is_dataclass_instance
def is_dataclass_instance(obj):
return is_dataclass(obj) and not is_dataclass(obj.type)
# the adapted version of asdict
def todict(obj):
if not is_dataclass_instance(obj):
raise TypeError("todict() should be called on dataclass instances")
return _todict_inner(obj)
Tests with the example dataclasses:
c = C([Point(0, 0), Point(10, 4)])
print(c)
cd = todict(c)
print(cd)
# {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}
print(cd.type)
# <class '__main__.C'>
Results are as expected.
2. Converting back to a dataclass
The recursive routine used by asdict
can be re-used for the reverse process, with some relatively minor changes:
def _fromdict_inner(obj):
# reconstruct the dataclass using the type tag
if is_dataclass_dict(obj):
result = {}
for name, data in obj.items():
result[name] = _fromdict_inner(data)
return obj.type(**result)
# exactly the same as before (without the tuple clause)
elif isinstance(obj, (list, tuple)):
return type(obj)(_fromdict_inner(v) for v in obj)
elif isinstance(obj, dict):
return type(obj)((_fromdict_inner(k), _fromdict_inner(v))
for k, v in obj.items())
else:
return copy.deepcopy(obj)
Functions used:
def is_dataclass_dict(obj):
return isinstance(obj, TypeDict)
def fromdict(obj):
if not is_dataclass_dict(obj):
raise TypeError("fromdict() should be called on TypeDict instances")
return _fromdict_inner(obj)
Test:
c = C([Point(0, 0), Point(10, 4)])
cd = todict(c)
cf = fromdict(cd)
print(c)
# C(mylist=[Point(x=0, y=0), Point(x=10, y=4)])
print(cf)
# C(mylist=[Point(x=0, y=0), Point(x=10, y=4)])
Again as expected.
Answered By - meowgoesthedog
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.