Issue
How I solve this error, I am trying to train a ticket classification model
I'm trying to make a ticket sorter with the Pytorch library, but I have this error. I can't understand what I've done wrong Can you help me?
data_transforms = {
'train' : transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val' : transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
data_dir = 'dataset_billete_argentino'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_name = image_datasets['train'].classes
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3,6,5)
self.pool = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(6,16,5)
self.fc1 = nn.Linear(16 * 53 * 53, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(x.size(0), 16* 53 * 53)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3
return x
net = Net()
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
from torch.optim import lr_scheduler
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
net = train_model(net, criterion, optimizer, exp_lr_scheduler,
num_epochs=25)
And give this error TypeError: max() received an invalid combination of arguments - got (Linear, int), but expected one of: * (Tensor input) * (Tensor input, name dim, bool keepdim, tuple of Tensors out) * (Tensor input, Tensor other, Tensor out) * (Tensor input, int dim, bool keepdim, tuple of Tensors out)
Epoch 0/24
----------
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-27-29dfe3459d8a> in <module>
4
5 net = train_model(net, criterion, optimizer, exp_lr_scheduler,
----> 6 num_epochs=25)
<ipython-input-19-1a5d4f162548> in train_model(model, criterion, optimizer, scheduler, num_epochs)
31 with torch.set_grad_enabled(phase == 'train'):
32 outputs = model(inputs)
---> 33 _, preds = torch.max(outputs, 1)
34 loss = criterion(outputs, labels)
35
TypeError: max() received an invalid combination of arguments - got (Linear, int), but expected one of:
* (Tensor input)
* (Tensor input, name dim, bool keepdim, tuple of Tensors out)
* (Tensor input, Tensor other, Tensor out)
* (Tensor input, int dim, bool keepdim, tuple of Tensors out)
Solution
As the error message says the problem is in this line:
_, preds = torch.max(outputs, 1)
There are two problems here:
As @Idodo said, you're giving 2 arguments and neither of them is a tensor. According to the message they are a
Linear
and aint
, respectively.If you remove the
int
you still have an error, because you're trying to compute a max value of ann.Linear
, which is not possible. Assessing your code I got the second error. In your model's forward method you have:
x = self.fc3
That's the problem. You must do:
x = self.fc3(x)
Answered By - André Pacheco
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.