Issue
How do I convert data from a Scikit-learn Bunch object to a Pandas DataFrame?
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
print(type(data))
data1 = pd. # Is there a Pandas method to accomplish this?
Solution
Manually, you can use pd.DataFrame
constructor, giving a numpy array (data
) and a list of the names of the columns (columns
).
To have everything in one DataFrame, you can concatenate the features and the target into one numpy array with np.c_[...]
(note the []
):
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
# save load_iris() sklearn dataset to iris
# if you'd like to check dataset type use: type(load_iris())
# if you'd like to view list of attributes use: dir(load_iris())
iris = load_iris()
# np.c_ is the numpy concatenate function
# which is used to concat iris['data'] and iris['target'] arrays
# for pandas column argument: concat iris['feature_names'] list
# and string list (in this case one string); you can make this anything you'd like..
# the original dataset would probably call this ['Species']
data1 = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['target'])
Answered By - TomDLT
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.