Issue
I am trying to implement a Siamese network that takes in two images. I load these images and create two separate dataloaders.
In my loop I want to go through both dataloaders simultaneously so that I can train the network on both images.
for i, data in enumerate(zip(dataloaders1, dataloaders2)):
# get the inputs
inputs1 = data[0][0].cuda(async=True);
labels1 = data[0][1].cuda(async=True);
inputs2 = data[1][0].cuda(async=True);
labels2 = data[1][1].cuda(async=True);
labels1 = labels1.view(batchSize,1)
labels2 = labels2.view(batchSize,1)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs1 = alexnet(inputs1)
outputs2 = alexnet(inputs2)
The return value of the dataloader is a tuple.
However, when I try to use zip
to iterate over them, I get the following error:
OSError: [Errno 24] Too many open files
Exception NameError: "global name 'FileNotFoundError' is not defined" in <bound method _DataLoaderIter.__del__ of <torch.utils.data.dataloader._DataLoaderIter object at 0x7f2d3c00c190>> ignored
Shouldn't zip work on all iterable items? But it seems like here I can't use it on dataloaders.
Is there any other way to pursue this? Or am I approaching the implementation of a Siamese network incorrectly?
Solution
I see you are struggling to make a right dataloder function. I would do:
class Siamese(Dataset):
def __init__(self, transform=None):
#init data here
def __len__(self):
return #length of the data
def __getitem__(self, idx):
#get images and labels here
#returned images must be tensor
#labels should be int
return img1, img2 , label1, label2
Answered By - macharya
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.