Issue
I have a dataframe including random data over 7 days and each data point is indexed by DatetimeIndex. I want to plot data of each day on a single plot. Currently my try is the following:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
n =10000
i = pd.date_range('2018-04-09', periods=n, freq='1min')
ts = pd.DataFrame({'A': [np.random.randn() for i in range(n)]}, index=i)
dates = list(ts.index.map(lambda t: t.date).unique())
for date in dates:
ts['A'].loc[date.strftime('%Y-%m-%d')].plot()
As you can see when DatetimeIndex is used the corresponding day is kept that is why we have each day back to the next one.
Questions:
1- How can I fix the current code to have an x-axis which starts from midnight and ends next midnight.
2- Is there a pandas way to group days better and plot them on a single day without using for loop?
Solution
You can split the index into dates and times and unstack
the ts into a dataframe:
df = ts.set_index([ts.index.date, ts.index.time]).unstack(level=0)
df.columns = df.columns.get_level_values(1)
then plot all in one chart:
df.plot()
or in separate charts:
axs = df.plot(subplots=True, title=df.columns.tolist(), legend=False, figsize=(6,8))
axs[0].figure.execute_constrained_layout()
Answered By - Stef
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.