Issue
I recently started working on Machine Learning with Linear Regression. I have used a LinearRegression
(lr
) to predict some values. Indeed, my predictions were bad, and I was asked to change the hyperparameters to obtain better results.
I used the following command to obtain the hyperparameters:
lr.get_params().keys()
lr.get_params()
and obtained the following:
'copy_X': True,
'fit_intercept': True,
'n_jobs': None,
'normalize': False,
'positive': False}
and
dict_keys(['copy_X', 'fit_intercept', 'n_jobs', 'normalize', 'positive'])
Now, this is where issues started to raise. I have tried to find the correct syntax to use the .set_params()
function, but every answer seemed outside my comprehension.
I have tried to assign a positional arguments since commands such as lr.set_params('normalize'==True)
returned
TypeError: set_params() takes 1 positional argument but 2 were given
and lr.set_params(some_params = {'normalize'})
returned
ValueError (`ValueError: Invalid parameter some_params for estimator LinearRegression(). Check the list of available parameters with estimator.get_params().keys().
Can someone provide a simple explanation of how this function works?
Solution
The correct syntax is set_params(**params)
where params
is a dictionary containing the estimator's parameters, see the scikit-learn documentation.
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.get_params()
# {'copy_X': True,
# 'fit_intercept': True,
# 'n_jobs': None,
# 'normalize': False,
# 'positive': False}
reg.set_params(**{
'copy_X': False,
'fit_intercept': False,
'n_jobs': -1,
'normalize': True,
'positive': True
})
reg.get_params()
# {'copy_X': False,
# 'fit_intercept': False,
# 'n_jobs': -1,
# 'normalize': True,
# 'positive': True}
Answered By - Flavia Giammarino
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.