Issue
I'm following this tutorial.
I'm at the last part where we combine the models in a regression.
I'm coding this in jupyter as follows:
import shutil
import os
import time
from datetime import datetime
import argparse
import pandas
import numpy as np
from tqdm import tqdm
from tqdm import tqdm_notebook
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchsample.transforms import RandomRotate, RandomTranslate, RandomFlip, ToTensor, Compose, RandomAffine
from torchvision import transforms
import torch.nn.functional as F
from tensorboardX import SummaryWriter
import dataloader
from dataloader import MRDataset
import model
from sklearn import metrics
def extract_predictions(task, plane, train=True):
assert task in ['acl', 'meniscus', 'abnormal']
assert plane in ['axial', 'coronal', 'sagittal']
models = os.listdir('models/')
model_name = list(filter(lambda name: task in name and plane in name, models))[0]
model_path = f'models/{model_name}'
mrnet = torch.load(model_path)
_ = mrnet.eval()
train_dataset = MRDataset('data/',
task,
plane,
transform=None,
train=train,
)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=1,
shuffle=False,
num_workers=10,
drop_last=False)
predictions = []
labels = []
with torch.no_grad():
for image, label, _ in tqdm_notebook(train_loader):
logit = mrnet(image.cuda())
prediction = torch.sigmoid(logit)
predictions.append(prediction.item())
labels.append(label.item())
return predictions, labels
task = 'acl'
results = {}
for plane in ['axial', 'coronal', 'sagittal']:
predictions, labels = extract_predictions(task, plane)
results['labels'] = labels
results[plane] = predictions
X = np.zeros((len(predictions), 3))
X[:, 0] = results['axial']
X[:, 1] = results['coronal']
X[:, 2] = results['sagittal']
y = np.array(labels)
logreg = LogisticRegression(solver='lbfgs')
logreg.fit(X, y)
task = 'acl'
results_val = {}
for plane in ['axial', 'coronal', 'sagittal']:
predictions, labels = extract_predictions(task, plane, train=False)
results_val['labels'] = labels
results_val[plane] = predictions
y_pred = logreg.predict_proba(X_val)[:, 1]
metrics.roc_auc_score(y_val, y_pred)
However I get this error:
ValueError Traceback (most recent call last)
<ipython-input-2-979acb314bc5> in <module>
3
4 for plane in ['axial', 'coronal', 'sagittal']:
----> 5 predictions, labels = extract_predictions(task, plane)
6 results['labels'] = labels
7 results[plane] = predictions
<ipython-input-1-647731b6b5c8> in extract_predictions(task, plane, train)
54 logit = mrnet(image.cuda())
55 prediction = torch.sigmoid(logit)
---> 56 predictions.append(prediction.item())
57 labels.append(label.item())
58
ValueError: only one element tensors can be converted to Python scalars
Here's the MRDataset code in case:
class MRDataset(data.Dataset):
def __init__(self, root_dir, task, plane, train=True, transform=None, weights=None):
super().__init__()
self.task = task
self.plane = plane
self.root_dir = root_dir
self.train = train
if self.train:
self.folder_path = self.root_dir + 'train/{0}/'.format(plane)
self.records = pd.read_csv(
self.root_dir + 'train-{0}.csv'.format(task), header=None, names=['id', 'label'])
else:
transform = None
self.folder_path = self.root_dir + 'valid/{0}/'.format(plane)
self.records = pd.read_csv(
self.root_dir + 'valid-{0}.csv'.format(task), header=None, names=['id', 'label'])
self.records['id'] = self.records['id'].map(
lambda i: '0' * (4 - len(str(i))) + str(i))
self.paths = [self.folder_path + filename +
'.npy' for filename in self.records['id'].tolist()]
self.labels = self.records['label'].tolist()
self.transform = transform
if weights is None:
pos = np.sum(self.labels)
neg = len(self.labels) - pos
self.weights = torch.FloatTensor([1, neg / pos])
else:
self.weights = torch.FloatTensor(weights)
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
array = np.load(self.paths[index])
label = self.labels[index]
if label == 1:
label = torch.FloatTensor([[0, 1]])
elif label == 0:
label = torch.FloatTensor([[1, 0]])
if self.transform:
array = self.transform(array)
else:
array = np.stack((array,)*3, axis=1)
array = torch.FloatTensor(array)
# if label.item() == 1:
# weight = np.array([self.weights[1]])
# weight = torch.FloatTensor(weight)
# else:
# weight = np.array([self.weights[0]])
# weight = torch.FloatTensor(weight)
return array, label, self.weights
I've only trained my models using 1 and 2 epochs for each plane of the MRI instead of 35 as in the tutorial, not sure if that has anything to do with it. Other than that I'm stranded as to what this could be? I also removed normalize=False
in the options for train_dataset
as it kept giving me an error and I read that it could be removed, but I'm not so sure?
Solution
Only a tensor that contains a single value can be converted to a scalar with item()
, try printing the contents of prediction
, I imagine this is a vector of probabilities indicating which label is most likely. Using argmax
on prediction
will give you your actual predicted label (assuming your labels are 0-n
).
Answered By - BenedictWilkinsAI
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.