Issue
I have a table that looks like this:
In the table the the left side labels -60
-40
-20
0
are direction_1
wind components and is where you would usually enter the table.
The headers are reference_fuel
and are 3.2
3.3
3.4
etc etc.
On the right had side, the numbers listed are direction_2
wind components.
The wind components on the left are for an aircraft heading in a certain direction direction_1
. The wind components on the right are for the same aircraft heading in a different direction direction_2
.
The reference_fuel
at the top and the two wind components are known prior to coming to this table.
An example:
I have a reference_fuel
of 4.7
, a direction_1
wind of -20
and a direction_2
wind of 40
. My answer is 542
.
What I am trying to figure out is if it is possible to use this style of table with Pandas. Will I need to break the table into different tables? Is it possible to interpolate if I have direction_1
wind of -50
and a direction_2
wind of 30
?
I would love to be able to just keep the table whole obviously rather than having to split it into different files. I am new to this kind of work so just trying to get my head around it. Thank you.
Here is the copied text of the table if anyone would like:
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
-60
252 261 271 280 289 297 306 315 323 331 339 348 356 364 372 380 -60
273 283 292 302 311 320 329 338 347 355 364 372 381 389 398 406 -40
292 302 311 321 331 340 349 358 367 376 385 394 403 412 420 429 -20
308 318 328 338 348 358 367 376 386 395 404 413 423 432 441 449 0
322 333 343 353 363 373 383 393 402 412 421 431 440 449 459 468 20
335 346 357 367 377 387 397 407 417 427 436 446 456 465 475 484 40
347 358 369 379 390 400 410 420 430 440 450 460 470 480 489 499 60
-40
268 277 287 296 305 314 323 331 340 349 357 365 374 382 390 399 -60
290 300 310 320 329 338 348 357 366 375 384 393 401 410 419 427 -40
310 321 331 341 350 360 370 379 389 398 407 417 426 435 444 453 -20
328 339 349 359 369 379 389 399 409 419 428 438 447 457 466 476 0
344 355 366 376 386 397 407 417 427 437 447 457 467 477 487 496 20
358 369 380 391 402 412 423 433 444 454 464 474 485 495 505 515 40
371 383 394 405 416 427 437 448 459 469 480 490 501 511 521 532 60
-20
281 291 300 309 319 328 337 346 355 363 372 381 389 398 407 415 -60
305 315 325 335 344 354 364 373 382 392 401 410 419 428 437 446 -40
326 337 347 357 367 377 387 397 407 417 426 436 446 455 465 474 -20
346 356 367 378 388 398 409 419 429 439 449 459 469 479 489 499 0
363 374 385 396 407 417 428 439 449 460 470 481 491 501 512 522 20
378 390 401 412 424 435 446 457 467 478 489 500 510 521 532 542 40
393 404 416 427 439 450 462 473 484 495 506 517 528 539 550 561 60
0
292 302 311 321 330 340 349 358 367 376 385 394 403 412 421 429 -60
318 328 338 348 358 368 377 387 397 406 416 425 435 444 453 463 -40
340 351 362 372 382 393 403 413 423 433 443 453 463 473 483 493 -20
361 372 383 394 405 415 426 437 447 458 468 479 489 499 510 520 0
379 391 402 413 425 436 447 458 469 480 491 502 512 523 534 545 20
396 408 420 431 443 455 466 477 489 500 511 523 534 545 556 567 40
412 424 436 448 460 472 483 495 507 519 530 542 553 565 576 588 60
Solution
You can keep your data in a pandas dataframe with a MultiIndex
of dir_1
and dir_2
.
To interpolate you need to reorganize this 2D structure into a 3D array, then you can use scipy's inpterpn
:
import pandas as pd
import numpy as np
from scipy.interpolate import interpn
data = {'dir_1': [-60, -60, -60, -60, -60, -60, -60, -40, -40, -40, -40, -40, -40, -40, -20, -20, -20, -20, -20, -20, -20, 0, 0, 0, 0, 0, 0, 0],
'3.2': [252, 273, 292, 308, 322, 335, 347, 268, 290, 310, 328, 344, 358, 371, 281, 305, 326, 346, 363, 378, 393, 292, 318, 340, 361, 379, 396, 412],
'3.3': [261, 283, 302, 318, 333, 346, 358, 277, 300, 321, 339, 355, 369, 383, 291, 315, 337, 356, 374, 390, 404, 302, 328, 351, 372, 391, 408, 424],
'3.4': [271, 292, 311, 328, 343, 357, 369, 287, 310, 331, 349, 366, 380, 394, 300, 325, 347, 367, 385, 401, 416, 311, 338, 362, 383, 402, 420, 436],
'3.5': [280, 302, 321, 338, 353, 367, 379, 296, 320, 341, 359, 376, 391, 405, 309, 335, 357, 378, 396, 412, 427, 321, 348, 372, 394, 413, 431, 448],
'3.6': [289, 311, 331, 348, 363, 377, 390, 305, 329, 350, 369, 386, 402, 416, 319, 344, 367, 388, 407, 424, 439, 330, 358, 382, 405, 425, 443, 460],
'3.7': [297, 320, 340, 358, 373, 387, 400, 314, 338, 360, 379, 397, 412, 427, 328, 354, 377, 398, 417, 435, 450, 340, 368, 393, 415, 436, 455, 472],
'3.8': [306, 329, 349, 367, 383, 397, 410, 323, 348, 370, 389, 407, 423, 437, 337, 364, 387, 409, 428, 446, 462, 349, 377, 403, 426, 447, 466, 483],
'3.9': [315, 338, 358, 376, 393, 407, 420, 331, 357, 379, 399, 417, 433, 448, 346, 373, 397, 419, 439, 457, 473, 358, 387, 413, 437, 458, 477, 495],
'4.0': [323, 347, 367, 386, 402, 417, 430, 340, 366, 389, 409, 427, 444, 459, 355, 382, 407, 429, 449, 467, 484, 367, 397, 423, 447, 469, 489, 507],
'4.1': [331, 355, 376, 395, 412, 427, 440, 349, 375, 398, 419, 437, 454, 469, 363, 392, 417, 439, 460, 478, 495, 376, 406, 433, 458, 480, 500, 519],
'4.2': [339, 364, 385, 404, 421, 436, 450, 357, 384, 407, 428, 447, 464, 480, 372, 401, 426, 449, 470, 489, 506, 385, 416, 443, 468, 491, 511, 530],
'4.3': [348, 372, 394, 413, 431, 446, 460, 365, 393, 417, 438, 457, 474, 490, 381, 410, 436, 459, 481, 500, 517, 394, 425, 453, 479, 502, 523, 542],
'4.4': [356, 381, 403, 423, 440, 456, 470, 374, 401, 426, 447, 467, 485, 501, 389, 419, 446, 469, 491, 510, 528, 403, 435, 463, 489, 512, 534, 553],
'4.5': [364, 389, 412, 432, 449, 465, 480, 382, 410, 435, 457, 477, 495, 511, 398, 428, 455, 479, 501, 521, 539, 412, 444, 473, 499, 523, 545, 565],
'4.6': [372, 398, 420, 441, 459, 475, 489, 390, 419, 444, 466, 487, 505, 521, 407, 437, 465, 489, 512, 532, 550, 421, 453, 483, 510, 534, 556, 576],
'4.7': [380, 406, 429, 449, 468, 484, 499, 399, 427, 453, 476, 496, 515, 532, 415, 446, 474, 499, 522, 542, 561, 429, 463, 493, 520, 545, 567, 588],
'dir_2': [-60, -40, -20, 0, 20, 40, 60, -60, -40, -20, 0, 20, 40, 60, -60, -40, -20, 0, 20, 40, 60, -60, -40, -20, 0, 20, 40, 60]}
df = pd.DataFrame(data).set_index(['dir_1', 'dir_2'])
df.columns = df.columns.map(float)
df.columns.name = 'fuel'
Your dataframe df
:
fuel 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
dir_1 dir_2
-60 -60 252 261 271 280 289 297 306 315 323 331 339 348 356 364 372 380
-40 273 283 292 302 311 320 329 338 347 355 364 372 381 389 398 406
-20 292 302 311 321 331 340 349 358 367 376 385 394 403 412 420 429
0 308 318 328 338 348 358 367 376 386 395 404 413 423 432 441 449
20 322 333 343 353 363 373 383 393 402 412 421 431 440 449 459 468
40 335 346 357 367 377 387 397 407 417 427 436 446 456 465 475 484
60 347 358 369 379 390 400 410 420 430 440 450 460 470 480 489 499
-40 -60 268 277 287 296 305 314 323 331 340 349 357 365 374 382 390 399
-40 290 300 310 320 329 338 348 357 366 375 384 393 401 410 419 427
-20 310 321 331 341 350 360 370 379 389 398 407 417 426 435 444 453
0 328 339 349 359 369 379 389 399 409 419 428 438 447 457 466 476
20 344 355 366 376 386 397 407 417 427 437 447 457 467 477 487 496
40 358 369 380 391 402 412 423 433 444 454 464 474 485 495 505 515
60 371 383 394 405 416 427 437 448 459 469 480 490 501 511 521 532
-20 -60 281 291 300 309 319 328 337 346 355 363 372 381 389 398 407 415
-40 305 315 325 335 344 354 364 373 382 392 401 410 419 428 437 446
-20 326 337 347 357 367 377 387 397 407 417 426 436 446 455 465 474
0 346 356 367 378 388 398 409 419 429 439 449 459 469 479 489 499
20 363 374 385 396 407 417 428 439 449 460 470 481 491 501 512 522
40 378 390 401 412 424 435 446 457 467 478 489 500 510 521 532 542
60 393 404 416 427 439 450 462 473 484 495 506 517 528 539 550 561
0 -60 292 302 311 321 330 340 349 358 367 376 385 394 403 412 421 429
-40 318 328 338 348 358 368 377 387 397 406 416 425 435 444 453 463
-20 340 351 362 372 382 393 403 413 423 433 443 453 463 473 483 493
0 361 372 383 394 405 415 426 437 447 458 468 479 489 499 510 520
20 379 391 402 413 425 436 447 458 469 480 491 502 512 523 534 545
40 396 408 420 431 443 455 466 477 489 500 511 523 534 545 556 567
60 412 424 436 448 460 472 483 495 507 519 530 542 553 565 576 588
Reorganize into 3D array of shape (7, 16, 4)
:
arr = np.dstack(np.array_split(df.to_numpy(), 4)) # split into 4 arrays along first axis and stack in depth
dir_2 = df.index.get_level_values(1).unique().to_numpy() # axis 0
fuel = df.columns.to_numpy() # axis 1
dir_1 = df.index.get_level_values(0).unique().to_numpy() # axis 2
Query or interpolate:
print(interpn((dir_2, fuel, dir_1), arr, [40, 4.7, -20]))
# array([542.])
print(interpn((dir_2, fuel, dir_1), arr, [30, 4.7, -50]))
# array([490.75])
Answered By - Stef
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.