Issue
I have a table like below, which is stored in pandas dataframe called 'data'.
Column1 | Device1 | event_rate % | % event dist | % non-event dist | % total dist |
---|---|---|---|---|---|
0 | Android | 3.08 | 27.3 | 32.96 | 32.75 |
1 | Chrome OS | 4.05 | 0.47 | 0.42 | 0.43 |
2 | Chromium OS | 9.95 | 0.23 | 0.08 | 0.09 |
3 | Linux | 2.27 | 0.05 | 0.09 | 0.09 |
4 | Mac OS | 6.43 | 4.39 | 2.45 | 2.52 |
5 | Others | 2.64 | 7.41 | 10.48 | 10.36 |
6 | Windows | 5.7 | 15.89 | 10.08 | 10.3 |
7 | iOS | 3.76 | 44.26 | 43.44 | 43.47 |
I am trying to create a desired seaborn/matplot chart like shown below which was created in excel.
Here is my python code:
feature = 'Device1'
fig, ax1 = plt.subplots(figsize=(10,6))
color = 'tab:blue'
title = 'Event rate by ' + feature
ax1.set_title(title, fontsize=14)
ax1.set_xlabel(feature, fontsize=14)
ax2 = sns.barplot(x=feature, y='% non-event dist', data = data, color=color)
ax2 = sns.barplot(x=feature, y='% event dist', data = data, color='orange')
plt.xticks(rotation=45)
ax1.set_ylabel('% Dist', fontsize=14, color=color)
ax1.tick_params(axis='y')
ax2 = ax1.twinx()
color = 'tab:red'
ax2.set_ylabel('Event Rate %', fontsize=14, color=color)
ax2 = sns.lineplot(x=feature, y='event_rate %', data = data, sort=False, color=color)
ax2.tick_params(axis='y', color=color)
handles1, labels1 = ax1.get_legend_handles_labels()
handles2, labels2 = ax2.get_legend_handles_labels()
handles = handles1 + handles2
labels = labels1 + labels2
plt.legend(handles,labels)
plt.show()
Here is what I get
Issues:
- Legend is not showing.
- The barplots are overlapping each other.
- Is there a way to show data labels?
How can I make my seaborn plot look similar to my excel plot? Thanks.
Solution
Load & Shape DataFrame
- The most import part of plotting data is to correctly shape the DataFrame for the plot API.
- I think it is easier to convert the DataFrame from a wide to long format using
.stack
.iloc[:, :-1]
selects all rows, but leaves the'% total dist'
out.
import pandas as pd
import seaborn as sns
# create dataframe
data = {'Device1': ['Android', 'Chrome OS', 'Chromium OS', 'Linux', 'Mac OS', 'Others', 'Windows', 'iOS'],
'event_rate %': [3.08, 4.05, 9.95, 2.27, 6.43, 2.64, 5.7, 3.76],
'% event dist': [27.3, 0.47, 0.23, 0.05, 4.39, 7.41, 15.89, 44.26],
'% non-event dist': [32.96, 0.42, 0.08, 0.09, 2.45, 10.48, 10.08, 43.44],
'% total dist': [32.75, 0.43, 0.09, 0.09, 2.52, 10.36, 10.3, 43.47]}
df = pd.DataFrame(data)
# display(df.head())
Device1 event_rate % % event dist % non-event dist % total dist
0 Android 3.08 27.30 32.96 32.75
1 Chrome OS 4.05 0.47 0.42 0.43
2 Chromium OS 9.95 0.23 0.08 0.09
3 Linux 2.27 0.05 0.09 0.09
4 Mac OS 6.43 4.39 2.45 2.52
# convert from a wide to long format
dfl = df.iloc[:, :-1].set_index('Device1').stack().reset_index(name='Values').rename({'level_1': 'Type'}, axis=1)
# select the desired data
dist = dfl[dfl.Type.str.contains('dist')]
rate = dfl[dfl.Type.str.contains('rate')]
# display(dist.head())
Device1 Type Values
1 Android % event dist 27.30
2 Android % non-event dist 32.96
4 Chrome OS % event dist 0.47
5 Chrome OS % non-event dist 0.42
7 Chromium OS % event dist 0.23
# display(rate.head())
Device1 Type Values
0 Android event_rate % 3.08
3 Chrome OS event_rate % 4.05
6 Chromium OS event_rate % 9.95
9 Linux event_rate % 2.27
12 Mac OS event_rate % 6.43
Plot and Annotate
- I have place the legends next to their respective axes
- See How to put the legend out of the plot for additional options related to placing the legends.
- Referenced this SO Question for creating the combined legend.
- Adjust the values in
bbox_to_anchor=(0.8, -0.25)
to move the legend around.
# create the figure and primary axes
fig, ax = plt.subplots(figsize=(11, 7))
# plot and format the bars
sns.barplot(data=dist, x='Device1', y='Values', hue='Type')
ax.set_ylabel('% Dist')
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
l1 = ax.legend(bbox_to_anchor=(-0.24, 1), loc='upper left')
# create the secondary axes
ax2 = ax.twinx()
# plot and format the line
sns.lineplot(data=rate, x='Device1', y='Values', ax=ax2, color='grey', label='event rate %', marker='o')
ax2.set_ylabel('% Event Rate')
l2 = ax2.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
# combined legend by extracting the components from legend l1 and l2
plt.legend(l1.get_patches() + l2.get_lines(),
[text.get_text() for text in l1.get_texts() + l2.get_texts()],
bbox_to_anchor=(0.8, -0.25), ncol=3)
# remove l1 from the plot
l1.remove()
# annotate the line
for _, x, _, y in rate.itertuples():
ax2.text(x, y, y)
Combined Legend
Separate Legend
- If you want separate legends, remove
plt.legend(...)
andl1.remove()
Answered By - Trenton McKinney
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.