Issue
I have:
haves = pd.DataFrame({'Product':['R123','R234'],
'Price':[1.18,0.23],
'CS_Medium':[1, 0],
'CS_Small':[0, 1],
'SC_A':[1,0],
'SC_B':[0,1],
'SC_C':[0,0]})
print(haves)
given a list of columns, like so:
list_of_starts_with = ["CS_", "SC_"]
I would like to arrive here:
wants = pd.DataFrame({'Product':['R123','R234'],
'Price':[1.18,0.23],
'CS':['Medium', 'Small'],
'SC':['A', 'B'],})
print(wants)
I am aware of wide_to_long
but don't think it is applicable here?
Solution
Based on the list of columns (assuming the starts_with
is enough to identify them), it is possible to do the changes in bulk:
def preprocess_column_names(list_of_starts_with, column_names):
"Returns a list of tuples (merged_column_name, options, columns)"
columns_to_transform = []
for starts_with in list_of_starts_with:
len_of_start = len(starts_with)
columns = [col for col in column_names if col.startswith(starts_with)]
options = [col[len_of_start:] for col in columns]
merged_column_name = starts_with[:-1] # Assuming that the last char is not needed
columns_to_transform.append((merged_column_name, options, columns))
return columns_to_transform
def merge_columns(df, merged_column_name, options, columns):
for col, option in zip(columns, options):
df.loc[df[col] == 1, merged_column_name] = option
return df.drop(columns=columns)
def merge_all(df, columns_to_transform):
for merged_column_name, options, columns in columns_to_transform:
df = merge_columns(df, merged_column_name, options, columns)
return df
And to run:
columns_to_transform = preprocess_column_names(list_of_starts_with, haves.columns)
wants = merge_all(haves, columns_to_transform)
If your column names are not surprising (such as Index_
being in list_of_starts_with
) the above code should solve the problem with a reasonable performance.
Answered By - nonDucor
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.