Issue
I want to build a histogram for the normal distribution and update the plot when the mean, standard deviation and sample size are changed; analogue to the post here.
However, I struggle with the update
function. In the example above
l, = plot(f(S, 1.0, 1.0))
and
def update(val):
l.set_ydata(f(S, sGmax.val, sKm.val))
are used but how would this have to be changed when a histogram is plotted? So, I am not sure how to use the return values from plt.hist
, pass them properly to update
and then update the plot accordingly. Could anyone explain this?
This is my code:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
def update(val):
mv = smean.val
stdv = sstd.val
n_sample = round(sn.val)
# what needs to go here? how to replace xxx
xxx(np.random.normal(mv, stdv, n_sample))
plt.draw()
ax = plt.subplot(111)
plt.subplots_adjust(left=0.25, bottom=0.25)
m0 = -2.5
std0 = 1
n0 = 1000
n_bins0 = 20
nd = np.random.normal(m0, std0, n0)
# what needs to be returned here?
plt.hist(nd, normed=True, bins=n_bins0, alpha=0.5)
axcolor = 'lightgray'
axmean = plt.axes([0.25, 0.01, 0.65, 0.03], axisbg=axcolor)
axstd = plt.axes([0.25, 0.06, 0.65, 0.03], axisbg=axcolor)
axssize = plt.axes([0.25, 0.11, 0.65, 0.03], axisbg=axcolor)
smean = Slider(axmean, 'Mean', -5, 5, valinit=m0)
sstd = Slider(axstd, 'Std', 0.1, 10.0, valinit=std0)
sn = Slider(axssize, 'n_sample', 10, 10000, valinit=n0)
smean.on_changed(update)
sstd.on_changed(update)
sn.on_changed(update)
plt.show()
Solution
One option is to clear the axis and just replot the histogram. The other option, more in the spirit of l.set_value
approach of the matplotlib slider example would be to generate the histogram data with numpy, use a bar chart and update this using bar.set_height
and bar.set_x
with a rescale on the axis. The complete example is then:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
def update(val):
mv = smean.val
stdv = sstd.val
n_sample = round(sn.val)
nd = np.random.normal(loc=mv, scale=stdv, size=n_sample)
#Update barchart height and x values
hist, bins = np.histogram(nd, normed=True, bins=n_bins0)
[bar.set_height(hist[i]) for i, bar in enumerate(b)]
[bar.set_x(bins[i]) for i, bar in enumerate(b)]
ax.relim()
ax.autoscale_view()
plt.draw()
def reset(event):
mv.reset()
stdv.reset()
n_sample.reset()
ax = plt.subplot(111)
plt.subplots_adjust(left=0.25, bottom=0.25)
m0 = -2.5
std0 = 1
n0 = 1000
n_bins0 = 20
nd = np.random.normal(m0, std0, n0)
hist, bins = np.histogram(nd, normed=True, bins=n_bins0)
b = plt.bar(bins[:-1], hist, width=.3)
axcolor = 'lightgray'
axmean = plt.axes([0.25, 0.01, 0.65, 0.03], axisbg=axcolor)
axstd = plt.axes([0.25, 0.06, 0.65, 0.03], axisbg=axcolor)
axssize = plt.axes([0.25, 0.11, 0.65, 0.03], axisbg=axcolor)
smean = Slider(axmean, 'Mean', -5, 5, valinit=m0)
sstd = Slider(axstd, 'Std', 0.1, 10.0, valinit=std0)
sn = Slider(axssize, 'n_sample', 10, 10000, valinit=n0)
smean.on_changed(update)
sstd.on_changed(update)
sn.on_changed(update)
plt.show()
UPDATE:
Version using clear axis (ax.cla()
) and redraw ax.hist(...)
,
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
def update(val):
mv = smean.val
stdv = sstd.val
n_sample = round(sn.val)
nd = np.random.normal(loc=mv, scale=stdv, size=n_sample)
#Redraw histogram
ax.cla()
ax.hist(nd, normed=True, bins=n_bins0, alpha=0.5)
plt.draw()
def reset(event):
mv.reset()
stdv.reset()
n_sample.reset()
ax = plt.subplot(111)
plt.subplots_adjust(left=0.25, bottom=0.25)
m0 = -2.5
std0 = 1
n0 = 1000
n_bins0 = 20
nd = np.random.normal(m0, std0, n0)
plt.hist(nd, normed=True, bins=n_bins0, alpha=0.5)
axcolor = 'lightgray'
axmean = plt.axes([0.25, 0.01, 0.65, 0.03], axisbg=axcolor)
axstd = plt.axes([0.25, 0.06, 0.65, 0.03], axisbg=axcolor)
axssize = plt.axes([0.25, 0.11, 0.65, 0.03], axisbg=axcolor)
smean = Slider(axmean, 'Mean', -5, 5, valinit=m0)
sstd = Slider(axstd, 'Std', 0.1, 10.0, valinit=std0)
sn = Slider(axssize, 'n_sample', 10, 10000, valinit=n0)
smean.on_changed(update)
sstd.on_changed(update)
sn.on_changed(update)
plt.show()
Answered By - Ed Smith
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.