Issue
I have two DataFrames which I want to merge based on a column. However, due to alternate spellings, different number of spaces, absence/presence of diacritical marks, I would like to be able to merge as long as they are similar to one another.
Any similarity algorithm will do (soundex, Levenshtein, difflib's).
Say one DataFrame has the following data:
df1 = DataFrame([[1],[2],[3],[4],[5]], index=['one','two','three','four','five'], columns=['number'])
number
one 1
two 2
three 3
four 4
five 5
df2 = DataFrame([['a'],['b'],['c'],['d'],['e']], index=['one','too','three','fours','five'], columns=['letter'])
letter
one a
too b
three c
fours d
five e
Then I want to get the resulting DataFrame
number letter
one 1 a
two 2 b
three 3 c
four 4 d
five 5 e
Solution
Similar to @locojay suggestion, you can apply difflib
's get_close_matches
to df2
's index and then apply a join
:
In [23]: import difflib
In [24]: difflib.get_close_matches
Out[24]: <function difflib.get_close_matches>
In [25]: df2.index = df2.index.map(lambda x: difflib.get_close_matches(x, df1.index)[0])
In [26]: df2
Out[26]:
letter
one a
two b
three c
four d
five e
In [31]: df1.join(df2)
Out[31]:
number letter
one 1 a
two 2 b
three 3 c
four 4 d
five 5 e
.
If these were columns, in the same vein you could apply to the column then merge
:
df1 = DataFrame([[1,'one'],[2,'two'],[3,'three'],[4,'four'],[5,'five']], columns=['number', 'name'])
df2 = DataFrame([['a','one'],['b','too'],['c','three'],['d','fours'],['e','five']], columns=['letter', 'name'])
df2['name'] = df2['name'].apply(lambda x: difflib.get_close_matches(x, df1['name'])[0])
df1.merge(df2)
Answered By - Andy Hayden
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.