Issue
I have been trying to write a program that will take an imputed number, and check and see if it is a prime number. The code that I have made so far works perfectly if the number is in fact a prime number. If the number is not a prime number it acts strange. I was wondering if anyone could tell me what the issue is with the code.
a=2
num=13
while num > a :
if num%a==0 & a!=num:
print('not prime')
a=a+1
else:
print('prime')
a=(num)+1
The result given when 24 is imputed is:
not prime
not prime
not prime
prime
How would I fix the error with the reporting prime on every odd and not prime for every even?
Solution
You need to stop iterating once you know a number isn't prime. Add a break
once you find prime to exit the while loop.
Making only minimal changes to your code to make it work:
a=2
num=13
while num > a :
if num%a==0 & a!=num:
print('not prime')
break
i += 1
else: # loop not exited via break
print('prime')
Your algorithm is equivalent to:
for a in range(a, num):
if a % num == 0:
print('not prime')
break
else: # loop not exited via break
print('prime')
If you throw it into a function you can dispense with break
and for-else:
def is_prime(n):
for i in range(3, n):
if n % i == 0:
return False
return True
Even if you are going to brute-force for prime like this you only need to iterate up to the square root of n
. Also, you can skip testing the even numbers after two.
With these suggestions:
import math
def is_prime(n):
if n % 2 == 0 and n > 2:
return False
for i in range(3, int(math.sqrt(n)) + 1, 2):
if n % i == 0:
return False
return True
Note that this code does not properly handle 0
, 1
, and negative numbers.
We make this simpler by using all
with a generator expression to replace the for-loop.
import math
def is_prime(n):
if n % 2 == 0 and n > 2:
return False
return all(n % i for i in range(3, int(math.sqrt(n)) + 1, 2))
Answered By - Steven Rumbalski
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.