Issue
I have code written in IPython using Jupyter Notebook that finds all the black pixels of an image and finds the shortest path between them.
I would like to something similar in 3D. Using point clouds, i have the coordinates of points that define an object in 3D space. How can i find the shortest/most logical path between these to draw them/connect the dots in one line.
Is it possible to adapt the 2D code (removing anything to do with pixels, and just inputing x,y,z coords?)
The Goal: Input 3D coordinates, find the most logical/least messy path connecting them all, using this new path, reorder the coordinates from start --> end of the path, output these organized coordinates.
Here is my current 2D code:
class ImageObject:
def __init__(self, url):
self.url = url
response = requests.get(url)
self.img = Image.open(BytesIO(response.content))
self.og_size = self.img.size
def show(self):
imshow(np.asarray(self.img))
def monochrome(self, scale=3, threshold=200):
# convert image to monochrome
image = self.img.convert('L')
image_array = np.array(image)
# Binarize a numpy array using threshold as cutoff
for i in range(len(image_array)):
for j in range(len(image_array[0])):
if image_array[i][j] > threshold:
image_array[i][j] = 255
else:
image_array[i][j] = 0
image = Image.fromarray(image_array)
# scale image down to reduce number of non-zero pixels
img_sm = image.resize(tuple([int(v/scale) for v in image.size]),Image.ANTIALIAS)
# convert image to black and white
img_bw = img_sm.convert(mode='1', dither=2)
self.bw_img = img_bw
self.pixels = (1 - np.asarray(img_bw).astype(int))
self.pixels_flat = np.reshape(self.pixels, self.pixels.size)
def show_bw(self):
print("Dimensions: {}".format(self.bw_img.size))
print("Num. pixels: {}".format(self.pixels.sum()))
imshow(np.asarray(self.bw_img))
def get_tour(self, starting_point="random", plot=True):
# Get greedy tour through pixels
absolute_index = np.where(self.pixels_flat > 0)[0] # positions of non-zero pixels
relative_index = np.array(range(1, len(absolute_index)+1 ))
# Replace each non-zero pixel in the array with its number
# i.e., the 10th non-zero pixel will have 10 in its place
flat_img_mod = deepcopy(self.pixels_flat)
for rel, pix in enumerate(absolute_index):
flat_img_mod[pix] = rel+1
# Get coordiantes for each non-zero pixel
img_idx = np.reshape(flat_img_mod, self.pixels.shape)
self.coord_list = []
for p1 in relative_index:
p1_coords = tuple([int(c) for c in np.where(img_idx==p1)])
self.coord_list.append(list(p1_coords))
# Calcualte distance between each pair of coords
dist_mat = distance.cdist(self.coord_list, self.coord_list, 'euclidean')
# Initialize search space with nearest neighbor tour
cities = self.coord_list
num_cities = len(cities)
if starting_point=="random":
start = int(np.random.choice(range(num_cities),size=1))
else:
assert starting_point < num_cities
start = starting_point
tour = [start]
active_city = start
for step in range(0, num_cities):
dist_row = deepcopy(dist_mat[active_city,:])
for done in tour:
dist_row[done] = np.inf
nearest_neighbor = np.argmin(dist_row)
if nearest_neighbor not in tour:
tour.append(nearest_neighbor)
active_city = nearest_neighbor
y_tour = -np.array([cities[tour[i % num_cities]] for i in range(num_cities+1) ])[:,0]
y_tour = y_tour - y_tour[0]#- min(y_tour)
x_tour = np.array([cities[tour[i % num_cities]] for i in range(num_cities+1) ])[:,1]
x_tour = x_tour - x_tour[0]#- min(x_tour)
# Circle tour back to beginning
np.append(x_tour, x_tour[0])
np.append(y_tour, y_tour[0])
num_cities = num_cities + 1
self.x_tour = x_tour
self.y_tour = y_tour
self.num_pixels = num_cities
if plot:
plt.plot(self.x_tour, self.y_tour)
def get_splines(self, degree=5, plot=True):
# Convert tours into parametric spline curves
x_spl = UnivariateSpline(list(range(0,self.num_pixels)), self.x_tour, k=degree)
y_spl = UnivariateSpline(list(range(0,self.num_pixels)), self.y_tour, k=degree)
self.x_spl = x_spl
self.y_spl = y_spl
if plot:
p = plt.plot(*zip(*[(x_spl(v), y_spl(v)) for v in np.linspace(0, self.num_pixels-1, 1000)]))
def plot_parametric(self, num_points=1000):
# num_points = number of points at which to sample the curves
t_vals, x_vals = zip(*[
(v, self.x_spl(v)) for v in np.linspace(0, self.num_pixels, num_points)
])
x_vals = np.array(x_vals)
y_vals = np.array([self.y_spl(v) for v in np.linspace(0, self.num_pixels, num_points)])
t_vals = np.array(t_vals)
plt.plot(t_vals, x_vals)
plt.plot(t_vals, y_vals)
Solution
Use mathematica's FindShortestTour
Function
Find the length and ordering of the shortest tour through points in the plane:
In[1]:=
Click for copyable input
✕
pts = {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 1}, {2, 3}, {2,
5}, {3, 1}, {3, 2}, {3, 4}, {3, 5}, {4, 1}, {4, 3}, {4, 5}, {5,
1}, {5, 2}, {5, 3}, {5, 4}};
Copy to clipboard.
In[2]:=
Click for copyable input
✕
pts = {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 1}, {2, 3}, {2,
5}, {3, 1}, {3, 2}, {3, 4}, {3, 5}, {4, 1}, {4, 3}, {4, 5}, {5,
1}, {5, 2}, {5, 3}, {5, 4}};
FindShortestTour[%]
Copy to clipboard.
Out[2]=
Order the points according to the tour found:
In[3]:=
Click for copyable input
✕
pts = {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 1}, {2, 3}, {2,
5}, {3, 1}, {3, 2}, {3, 4}, {3, 5}, {4, 1}, {4, 3}, {4, 5}, {5,
1}, {5, 2}, {5, 3}, {5, 4}};
FindShortestTour[%];
pts[[Last[%]]]
Copy to clipboard.
Out[3]=
Plot the tour:
In[4]:=
Click for copyable input
Copy to clipboard.
Out[4]=
Answered By - Camden S
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.