Issue
Is the first time that I'm scraping a website. The problem is that are two different tables with the same classname. By far I have learned that to find the data I have to find it by the classname of the HTML tag. The code works to scrape the data from the first table, but I want to do it for the second table as well.
import bs4 as bs
from urllib.request import Request, urlopen
import pandas as pd
from pyparsing import col
req = Request('https://www.worldometers.info/world-population/albania-population/',
headers={'User-Agent': 'Mozilla/5.0'})
webpage = urlopen(req).read()
soup = bs.BeautifulSoup(webpage, 'html5lib')
# albania population
pupulation = soup.find(class_='col-md-8 country-pop-description')
for i in pupulation.find_all('strong')[1]:
print()
# print(i.text, end=" ")
# getting all city populattion
city_population = soup.find(
class_='table table-hover table-condensed table-list')
# print(city_population.text, end=" ")
# the first table
# population of albania(historical)
df = pd.DataFrame(columns=['Year', 'Population' 'Yearly Change %', 'Yearly Change', 'Migrants (net)', 'Median Age', 'Fertility Rate',
'Density(P/Km2)', 'Urban Pop %', 'Urban Population', "Countrys Share of Population", 'World Population', 'Albania Global Rank'])
hisoric_population = soup.find('table',
class_='table table-striped table-bordered table-hover table-condensed table-list')
for row in hisoric_population.tbody.find_all('tr'):
columns = row.find_all('td')
if (columns != []):
Year = columns[0].text.strip()
Population = columns[1].text.strip()
YearlyChange_percent = columns[2].text.strip('&0')
YearlyChange = columns[3].text.strip()
Migrants_net = columns[4].text.strip()
MedianAge = columns[5].text.strip('&0')
FertilityRate = columns[6].text.strip('&0')
Density_P_Km2 = columns[7].text.strip()
UrbanPop_percent = columns[8].text.strip('&0')
Urban_Population = columns[9].text.strip()
Countrys_Share_of_Population = columns[10].text.strip('&0')
World_Population = columns[11].text.strip()
Albania_Global_Rank = columns[12].text.strip()
df = df.append({'Year': Year, 'Population': Population, 'Yearly Change %': YearlyChange_percent, 'Yearly Change': YearlyChange, 'Migrants (net)': Migrants_net, 'Median Age': MedianAge, 'Fertility Rate': FertilityRate,
'Density(P/Km2)': Density_P_Km2, 'Urban Pop %': UrbanPop_percent, 'Countrys Share of Population': Countrys_Share_of_Population, 'World Population': World_Population, 'Albania Global Rank': Albania_Global_Rank}, ignore_index=True)
df.head()
# print(df)
#the second table
# Albania Population Forecast
forecast_population = soup.find(
'table', class_='table table-striped table-bordered table-hover table-condensed table-list')
for row in hisoric_population.tbody.find_all('tr'):
columns = row.find_all('td')
print(columns)
Solution
As stated, use .find_all()
. When you use .find()
, it will only return the first instance it finds. The find_all()
will return all thoe instances it finds, into a list. You then need to cal out the specific one you want by it's index value.
On another note, why not use pandas
to parse the tables. It uses BeautifulSoup under the hood.
import requests
import pandas as pd
url = 'https://www.worldometers.info/world-population/albania-population/'
response = requests.get(url)
dfs = pd.read_html(response.text, attrs={'class':'table table-striped table-bordered table-hover table-condensed table-list'})
historic_population = dfs[0]
forecast_population = dfs[1]
Output:
print(historic_population)
Year Population ... World Population AlbaniaGlobal Rank
0 2020 2877797 ... 7794798739 140
1 2019 2880917 ... 7713468100 140
2 2018 2882740 ... 7631091040 140
3 2017 2884169 ... 7547858925 140
4 2016 2886438 ... 7464022049 141
5 2015 2890513 ... 7379797139 141
6 2010 2948023 ... 6956823603 138
7 2005 3086810 ... 6541907027 134
8 2000 3129243 ... 6143493823 131
9 1995 3112936 ... 5744212979 130
10 1990 3286073 ... 5327231061 125
11 1985 2969672 ... 4870921740 125
12 1980 2682690 ... 4458003514 125
13 1975 2411732 ... 4079480606 126
14 1970 2150707 ... 3700437046 125
15 1965 1896171 ... 3339583597 127
16 1960 1636090 ... 3034949748 124
17 1955 1419994 ... 2773019936 127
[18 rows x 13 columns]
print(forecast_population)
Year Population ... World Population AlbaniaGlobal Rank
0 NaN NaN ... NaN NaN
1 2020.0 2877797.0 ... 7.794799e+09 140.0
2 2025.0 2840464.0 ... 8.184437e+09 141.0
3 2030.0 2786974.0 ... 8.548487e+09 143.0
4 2035.0 2721082.0 ... 8.887524e+09 145.0
5 2040.0 2634384.0 ... 9.198847e+09 146.0
6 2045.0 2533645.0 ... 9.481803e+09 147.0
7 2050.0 2424061.0 ... 9.735034e+09 148.0
[8 rows x 13 columns]
Answered By - chitown88
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.