Issue
I have the below data:
prop_tenure prop_12m prop_6m
0.00 0.00 0.00
0.00 0.00 0.00
0.06 0.06 0.10
0.38 0.38 0.25
0.61 0.61 0.66
0.01 0.01 0.02
0.10 0.10 0.12
0.04 0.04 0.04
0.22 0.22 0.22
and I am doing a pairplot as below:
sns.pairplot(data)
plt.show()
However I would like to display the correlation coefficient among the variables and if possible the skewness and kurtosis of each variable. I am not sure how to do that in seaborn.
Solution
As far as I'm aware, there is no out of the box function to do this, you'll have to create your own:
from scipy.stats import pearsonr
import matplotlib.pyplot as plt
def corrfunc(x, y, ax=None, **kws):
"""Plot the correlation coefficient in the top left hand corner of a plot."""
r, _ = pearsonr(x, y)
ax = ax or plt.gca()
ax.annotate(f'ρ = {r:.2f}', xy=(.1, .9), xycoords=ax.transAxes)
Example using your input:
import seaborn as sns; sns.set(style='white')
import pandas as pd
data = {'prop_tenure': [0.0, 0.0, 0.06, 0.38, 0.61, 0.01, 0.10, 0.04, 0.22],
'prop_12m': [0.0, 0.0, 0.06, 0.38, 0.61, 0.01, 0.10, 0.04, 0.22],
'prop_6m': [0.0, 0.0, 0.10, 0.25, 0.66, 0.02, 0.12, 0.04, 0.22]}
df = pd.DataFrame(data)
g = sns.pairplot(df)
g.map_lower(corrfunc)
plt.show()
Answered By - iacob
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.