Issue
I have some data as shown below
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
data = {
'gender':['female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male'],
'baseline':['M1', 'M1', 'M1', 'M1', 'M1', 'M4', 'M4', 'M2', 'M2', 'M2', 'M2', 'M2', 'M3', 'M3', 'M3', 'M3', 'M5', 'M5', 'M5', 'M5', 'M1', 'M2', 'M3', 'M4', 'M5', 'M2', 'M2', 'M2', 'M3', 'M3', 'M3', 'M3', 'M4', 'M4', 'M4', 'M5', 'M5', 'M5', 'M5', 'M5'],
'endline':['M5', 'M3', 'M1', 'M1', 'M1', 'M4', 'M4', 'M5', 'M2', 'M5', 'M5', 'M3', 'M3', 'M3', 'M4', 'M4', 'M4', 'M1', 'M1', 'M2', 'M5', 'M5', 'M5', 'M1', 'M1', 'M1', 'M1', 'M4', 'M4', 'M4', 'M4', 'M4', 'M3', 'M3', 'M3', 'M3', 'M2', 'M2', 'M2', 'M2']}
df = pd.DataFrame(data)
df.head()
cross_tab_prop = pd.crosstab(index = df['gender'],
columns = df['baseline'],
normalize = "index")
cross_tab_prop.plot(kind = 'bar',
stacked = True,
colormap = 'tab10',
figsize = (10, 6))
plt.legend(loc = "upper left", ncol = 5)
plt.xlabel("Gender")
plt.ylabel("Proportion")
and would like to produce a chart as shown below
I would appreciate any hints on how to achieve this.
Thanks in advance
Solution
With seaborn, the approach would be:
- convert the dataframe to long form
- create a
sns.displot()
withmultiple='fill'
andcol='gender'
import matplotlib.pyplot as plt
from matplotlib.ticker import PercentFormatter
import seaborn as sns
import pandas as pd
data = {
'gender':['female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'female', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male', 'male'],
'baseline':['M1', 'M1', 'M1', 'M1', 'M1', 'M4', 'M4', 'M2', 'M2', 'M2', 'M2', 'M2', 'M3', 'M3', 'M3', 'M3', 'M5', 'M5', 'M5', 'M5', 'M1', 'M2', 'M3', 'M4', 'M5', 'M2', 'M2', 'M2', 'M3', 'M3', 'M3', 'M3', 'M4', 'M4', 'M4', 'M5', 'M5', 'M5', 'M5', 'M5'],
'endline':['M5', 'M3', 'M1', 'M1', 'M1', 'M4', 'M4', 'M5', 'M2', 'M5', 'M5', 'M3', 'M3', 'M3', 'M4', 'M4', 'M4', 'M1', 'M1', 'M2', 'M5', 'M5', 'M5', 'M1', 'M1', 'M1', 'M1', 'M4', 'M4', 'M4', 'M4', 'M4', 'M3', 'M3', 'M3', 'M3', 'M2', 'M2', 'M2', 'M2']}
df = pd.DataFrame(data)
df_long = df.melt(id_vars='gender', value_vars=['baseline', 'endline'],
var_name='which', value_name='property')
g = sns.displot(data=df_long, x='which', hue='property', col='gender', multiple='fill')
g.set(xlabel='', ylabel='')
g.axes[0, 0].yaxis.set_major_formatter(PercentFormatter(1))
plt.show()
Here is the same plot with different styling:
import matplotlib.pyplot as plt
from matplotlib.ticker import PercentFormatter, MultipleLocator
import seaborn as sns
import pandas as pd
# df_long = ...
sns.set_style('whitegrid')
g = sns.displot(data=df_long, x='which', hue='property', col='gender', multiple='fill', shrink=0.7, palette='turbo')
g.set(xlabel='', ylabel='')
g.axes[0, 0].yaxis.set_major_locator(MultipleLocator(.1))
g.axes[0, 0].yaxis.set_major_formatter(PercentFormatter(1))
g.axes[0, 0].set_xlim(-.6, 1.6)
sns.despine(left=True)
plt.subplots_adjust(wspace=0)
Answered By - JohanC
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.