Issue
I have the following code that uses tensorflow to calculate a custom average loss when the image is consistently rotated:
import tensorflow as tf
import cv2
#initialize x_hat
img = cv2.imread("4.jpg")
x_hat = tf.Variable(img,name = 'x_hat') #img we want to attack
@tf.function
def cost2():
image=x_hat
#Now it will generate 100 samples rotated
num_samples = 100
average_loss = 0
for j in range(num_samples):
#ADD ROTATION (there may be a problem here)
rotated = tf.keras.preprocessing.image.random_rotation(image,
tf.random.uniform(shape=(),minval=40, maxval=90),channel_axis=2)
#get logits
rotated_logits, _ = resnet(rotated)
#get average CUSTOM loss
average_loss+=-1 * tf.nn.softmax_cross_entropy_with_logits(logits=rotated_logits, labels=labels)/ num_samples
return average_loss
and here is how I call it
learning_rate = 1e-1
optim = tf.optimizers.SGD (learning_rate=learning_rate)
epsilon = 2.0/255.0 # a really small perturbation
below = x - epsilon
above = x + epsilon
demo_steps = 200
# projected gradient descent
for i in range(demo_steps):
loss = optim.minimize(cost2, var_list=[x_hat])
if (i+1) % 10 == 0:
print('step %d, loss=%g' % (i+1, loss.numpy()))
projected = tf.clip_by_value(tf.clip_by_value(x_hat, below, above), 0, 1)
with tf.control_dependencies([projected]):
x_hat.assign(projected)
adv_robust = x_hat.numpy()
However, the following error returns to me once I run the code:
TypeError: in user code:
<ipython-input-183-abde02909da7>:14 cost2 *
rotated = tf.keras.preprocessing.image.random_rotation(image,
tf.random.uniform(shape=(),minval=40, maxval=90),channel_axis=2)
/home/me/.local/lib/python3.8/site-
packages/keras_preprocessing/image/affine_transformations.py:55 random_rotation *
theta = np.random.uniform(-rg, rg)
mtrand.pyx:1111 numpy.random.mtrand.RandomState.uniform **
TypeError: __array__() takes 1 positional argument but 2 were given
I am on Tensorflow 2.4.0 and the random_rotation and random.uniform functions are correct according to the TF 2.4.0 documentation HERE and HERE. So, what am I missing here?
Solution
The error might be coming from using TF
tensors. As stated in the docs you linked regarding random_rotation
:
Performs a random rotation of a Numpy image tensor.
Meaning you cannot use TF
tensors with this operation. If you are in eager execution mode you can use tensor.numpy()
:
import tensorflow as tf
image = tf.random.normal((180, 180, 3))
rotated = tf.keras.preprocessing.image.random_rotation(image.numpy(),
tf.random.uniform(shape=(),minval=40, maxval=90).numpy(),channel_axis=2)
Otherwise, it is recommended to use the preprocessing layer: tf.keras.layers.RandomRotation
, since using numpy
in graph mode (for example in a function decorated with @tf.function
) is not recommended.
Here is an example using the tf.keras.layers.RandomRotation
:
import tensorflow as tf
import os
import matplotlib.pyplot as plt
_URL = 'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip'
path_to_zip = tf.keras.utils.get_file('cats_and_dogs.zip', origin=_URL, extract=True)
PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered')
train_dir = os.path.join(PATH, 'train')
validation_dir = os.path.join(PATH, 'validation')
BATCH_SIZE = 1
IMG_SIZE = (160, 160)
train_ds = tf.keras.utils.image_dataset_from_directory(train_dir,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE)
data_augmentation = tf.keras.Sequential([
tf.keras.layers.RandomRotation(tf.random.uniform(shape=(),minval=40, maxval=90)),
])
for image, _ in train_ds.take(1):
plt.figure(figsize=(10, 10))
first_image = image[0]
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
augmented_image = data_augmentation(tf.expand_dims(first_image, 0), training=True)
plt.imshow(augmented_image[0] / 255)
plt.axis('off')
Answered By - AloneTogether
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.