Issue
I have a dataset with ~40 columns, and am using .apply(word_tokenize)
on 5 of them like so: df['token_column'] = df.column.apply(word_tokenize)
.
I'm getting a TypeError for only one of the columns, we'll call this problem_column
TypeError: expected string or bytes-like object
Here's the full error (stripped df and column names, and pii), I'm new to Python and am still trying to figure out which parts of the error messages are relevant:
TypeError Traceback (most recent call last)
<ipython-input-51-22429aec3622> in <module>()
----> 1 df['token_column'] = df.problem_column.apply(word_tokenize)
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\series.py in apply(self, func, convert_dtype, args, **kwds)
2353 else:
2354 values = self.asobject
-> 2355 mapped = lib.map_infer(values, f, convert=convert_dtype)
2356
2357 if len(mapped) and isinstance(mapped[0], Series):
pandas\_libs\src\inference.pyx in pandas._libs.lib.map_infer (pandas\_libs\lib.c:66440)()
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\__init__.py in word_tokenize(text, language, preserve_line)
128 :type preserver_line: bool
129 """
--> 130 sentences = [text] if preserve_line else sent_tokenize(text, language)
131 return [token for sent in sentences
132 for token in _treebank_word_tokenizer.tokenize(sent)]
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\__init__.py in sent_tokenize(text, language)
95 """
96 tokenizer = load('tokenizers/punkt/{0}.pickle'.format(language))
---> 97 return tokenizer.tokenize(text)
98
99 # Standard word tokenizer.
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\punkt.py in tokenize(self, text, realign_boundaries)
1233 Given a text, returns a list of the sentences in that text.
1234 """
-> 1235 return list(self.sentences_from_text(text, realign_boundaries))
1236
1237 def debug_decisions(self, text):
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\punkt.py in sentences_from_text(self, text, realign_boundaries)
1281 follows the period.
1282 """
-> 1283 return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)]
1284
1285 def _slices_from_text(self, text):
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\punkt.py in span_tokenize(self, text, realign_boundaries)
1272 if realign_boundaries:
1273 slices = self._realign_boundaries(text, slices)
-> 1274 return [(sl.start, sl.stop) for sl in slices]
1275
1276 def sentences_from_text(self, text, realign_boundaries=True):
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\punkt.py in <listcomp>(.0)
1272 if realign_boundaries:
1273 slices = self._realign_boundaries(text, slices)
-> 1274 return [(sl.start, sl.stop) for sl in slices]
1275
1276 def sentences_from_text(self, text, realign_boundaries=True):
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _realign_boundaries(self, text, slices)
1312 """
1313 realign = 0
-> 1314 for sl1, sl2 in _pair_iter(slices):
1315 sl1 = slice(sl1.start + realign, sl1.stop)
1316 if not sl2:
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _pair_iter(it)
310 """
311 it = iter(it)
--> 312 prev = next(it)
313 for el in it:
314 yield (prev, el)
C:\Users\egagne\AppData\Local\Continuum\Anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _slices_from_text(self, text)
1285 def _slices_from_text(self, text):
1286 last_break = 0
-> 1287 for match in self._lang_vars.period_context_re().finditer(text):
1288 context = match.group() + match.group('after_tok')
1289 if self.text_contains_sentbreak(context):
TypeError: expected string or bytes-like object
The 5 columns are all character/string (as verified in SQL Server, SAS, and using .select_dtypes(include=[object]))
.
For good measure I used .to_string()
to make sure problem_column is really and truly not anything besides a string, but I continue to get the error. If I process the columns separately good_column1-good_column4 continue to work and problem_column will still generate the error.
I've googled around and aside from stripping any numbers from the set (which I can't do, because those are meaningful) I haven't found any additional fixes.
Solution
This is what got me the desired result.
def custom_tokenize(text):
if not text:
print('The text to be tokenized is a None type. Defaulting to blank string.')
text = ''
return word_tokenize(text)
df['tokenized_column'] = df.column.apply(custom_tokenize)
Answered By - LMGagne
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.