Issue
I am trying to train my q&a model through pytorch_lightning. However while running the command trainer.fit(model,data_module)
I am getting the following error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-72-b9cdaa88efa7> in <module>()
----> 1 trainer.fit(model,data_module)
4 frames
/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in _call_setup_hook(self)
1488
1489 if self.datamodule is not None:
-> 1490 self.datamodule.setup(stage=fn)
1491 self._call_callback_hooks("setup", stage=fn)
1492 self._call_lightning_module_hook("setup", stage=fn)
TypeError: setup() got an unexpected keyword argument 'stage'
I have installed and imported pytorch_lightning.
Also I have defined data_module = BioQADataModule(train_df, val_df, tokenizer, batch_size = BATCH_SIZE)
where BATCH_SIZE = 2, N_EPOCHS = 6.
The model I have used is as follows:-
model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict=True)
Also, I have defined the class for the model as follows:-
class BioQAModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict=True)
def forward(self, input_ids, attention_mask, labels=None):
output = self.model(
input_ids = encoding["input_ids"],
attention_mask = encoding["attention_mask"],
labels=labels
)
return output.loss, output.logits
def training_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels = batch["labels"]
loss, outputs = self(input_ids, attention_mask, labels)
self.log("train_loss", loss, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels = batch["labels"]
loss, outputs = self(input_ids, attention_mask, labels)
self.log("val_loss", loss, prog_bar=True, logger=True)
return loss
def test_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels = batch["labels"]
loss, outputs = self(input_ids, attention_mask, labels)
self.log("test_loss", loss, prog_bar=True, logger=True)
return loss
def configure_optimizers(self):
return AdamW(self.parameters(), lr=0.0001)
For any additional information required, please specify.
Edit 1: Adding BioQADataModule:
class BioQADataModule(pl.LightningDataModule):
def __init__(
self,
train_df: pd.DataFrame,
test_df: pd.DataFrame,
tokenizer: T5Tokenizer,
batch_size: int = 8,
source_max_token_len = 396,
target_max_token_len = 32
):
super().__init__()
self.batch_size = batch_size
self.train_df = train_df
self.test_df = test_df
self.tokenizer = tokenizer
self.source_max_token_len = source_max_token_len
self.target_max_token_len = target_max_token_len
def setup(self):
self.train_dataset = BioQADataset(
self.train_df,
self.tokenizer,
self.source_max_token_len,
self.target_max_token_len
)
self.test_dataset = BioQADataset(
self.test_df,
self.tokenizer,
self.source_max_token_len,
self.target_max_token_len
)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size = self.batch_size,
shuffle = True,
num_workers = 4
)
def val_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size = 1,
shuffle = True,
num_workers = 4
)
def test_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size = 1,
shuffle = True,
num_workers = 4
)
Solution
You need to add an extra argument stage=None
to your setup method:
def setup(self, stage=None):
self.train_dataset = BioQADataset(
self.train_df,
self.tokenizer,
self.source_max_token_len,
self.target_max_token_len
)
self.test_dataset = BioQADataset(
self.test_df,
self.tokenizer,
self.source_max_token_len,
self.target_max_token_len
)
I've played with Pytorch Lightning myself for multi-GPU training here. Although some of the code is a bit outdated (metrics are a standalone module now), you might find it useful.
Answered By - Aramakus
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.