Issue
I am plotting a word cloud of a sentence in python using Matplotlib like below:
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS
word_cloud = WordCloud(collocations = False, background_color = 'white').generate("This is a test sentence with the purpose of plotting a word cloud and converting it to dash graph object")
plt.axis('off')
image = plt.imshow(word_cloud, interpolation='bilinear')
The result looks like below:
I want to pass this image to a graph in dash as a graph object. I wrote the following code:
import dash
from dash.dependencies import Input, Output, State
from dash import dcc
from dash import dash_table, html
from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import plotly.tools
app = dash.Dash(__name__)
app.layout = html.Div(children=[
html.A("Start",style={'backgroundColor':'green'},id='start'),
dcc.Graph(id='result')
])
@app.callback(
Output('result', 'figure'),
[Input('start', 'n_clicks')]
)
def update_figure(n1):
word_cloud = WordCloud(collocations = False, background_color = 'white').generate("his is a test sentence with the purpose of plotting a word cloud and converting it to dash graph object")
plt.axis('off')
word_cloud_figure = plt.figure(word_cloud, interpolation='bilinear')
if(n1):
plotly.tools.mpl_to_plotly(word_cloud_figure)
return word_cloud_figure
if __name__ == '__main__':
app.run_server(debug=True, port=9872)
But I got this error:
TypeError: int() argument must be a string, a bytes-like object or a number, not 'WordCloud'
How can I fix this issue and show the word cloud in dash's graph?
Solution
I found a way to solve this problem by using the code below. Also, I limited the number of words by adding an inout field with ID "max-word-count" to make the figure look nicer when the number of words is too many.
@app.callback(
Output('indicator-graphic-for-word-clouds', 'figure'),
[
Input('description-dropdown', 'value'),
Input('max-word-count', 'value')
],
State('analyzed-dataset', 'data')
)
def update_graph(selected_description, max_word_count, analyzed_dataset):
dataset = pd.DataFrame.from_dict(analyzed_dataset)
text = ""
if(selected_description == "All"):
temp_dataset = dataset['description']
for review in temp_dataset:
text += review
else:
temp_dataset = dataset[dataset['comment'] == selected_description]['description']
print(temp_dataset)
for review in temp_dataset:
text += review
text += "\n"
tokenizer = nltk.RegexpTokenizer(r"\w+")
tokenized_review = tokenizer.tokenize(text.lower())
filtered_review = [word for word in tokenized_review if word not in stopwords.words('english')]
word_count = 0
try:
word_count = int(max_word_count)
if(word_count > len(filtered_review)):
word_count = len(filtered_review)
except:
word_count = len(filtered_review)
colors = [plotly.colors.DEFAULT_PLOTLY_COLORS[random.randrange(1, 10)] for i in range(word_count)]
weights = [random.randint(15, 35) for i in range(word_count)]
data = go.Scatter(x=[random.random() for i in range(word_count)],
y=[random.random() for i in range(word_count)],
mode='text',
text=filtered_review,
marker={'opacity': 0.3},
textfont={'size': weights,
'color': colors})
layout = go.Layout({'xaxis': {'showgrid': False, 'showticklabels': False, 'zeroline': False},
'yaxis': {'showgrid': False, 'showticklabels': False, 'zeroline': False}})
fig = go.Figure(data=[data], layout=layout)
return fig
Answered By - Naser.Sadeghi
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.