Issue
I have grayscale images, but I need transform it to a dataset of 1d vectors How can I do this? I could not find a suitable method in transforms:
train_dataset = torchvision.datasets.ImageFolder(root='./data',train=True, transform=transforms.ToTensor())
test_dataset = torchvision.datasets.ImageFolder(root='./data',train=False, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=4, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=4, shuffle=False)
Solution
Here's how you can do it using Lambda
import torch
from torchvision.datasets import MNIST
import torchvision.transforms as T
# without flatten
dataset = MNIST(root='.', download=True, transform=T.ToTensor())
print(dataset[0][0].shape)
# >>> torch.Size([1, 28, 28])
# with flatten (using Lambda, but you can do it in many other ways)
dataset_flatten = MNIST(root='.', download=True, transform=T.Compose([T.ToTensor(), T.Lambda(lambda x: torch.flatten(x))]))
print(dataset_flatten[0][0].shape)
# >>> torch.Size([784])
Answered By - Berriel
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.