Issue
im traying to do kfold validation
X = df[['Smedications', 'Infections', 'lib' , 'north']].values
Y= df['Comorbidities'].values
kf = KFold(n_splits=10, shuffle=True)
list(kf.split(X))
splits = list(kf.split(X))
train_indices, test_indices = splits[0]
X_train = X[train_indices]
X_test = X[test_indices]
y_train = y[train_indices]
y_test = y[test_indices]
model = LogisticRegression()
model.fit(X_train, y_train)
print(model.score(X_test, y_test))
but i have error message
TypeError Traceback (most recent call last) in () 12 X_train = X[train_indices] 13 X_test = X[test_indices] ---> 14 y_train = y[train_indices] 15 y_test = y[test_indices] 16
TypeError: only integer scalar arrays can be converted to a scalar index
Solution
Probably you either have arrays that are not numpy or indexes that are not of the int type. If it doesn't work, then show some rows with data X, Y.
X = df[['Smedications', 'Infections', 'lib' , 'north']].values
Y= df['Comorbidities'].values
kf = KFold(n_splits=10, shuffle=True)
list(kf.split(X))
splits = list(kf.split(X))
train_indices, test_indices = splits[0]
X_train = np.array(X)[train_indices.astype(int)]
X_test = np.array(X)[test_indices.astype(int)]
y_train = np.array(y)[train_indices.astype(int)]
y_test = np.array(y)[test_indices.astype(int)]
model = LogisticRegression()
model.fit(X_train, y_train)
print(model.score(X_test, y_test))
Answered By - inquirer
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.