Issue
I have a pandas dataframe, df
:
c1 c2
0 10 100
1 11 110
2 12 120
How do I iterate over the rows of this dataframe? For every row, I want to be able to access its elements (values in cells) by the name of the columns. For example:
for row in df.rows:
print(row['c1'], row['c2'])
I found a similar question which suggests using either of these:
for date, row in df.T.iteritems():
for row in df.iterrows():
But I do not understand what the row
object is and how I can work with it.
Solution
DataFrame.iterrows
is a generator which yields both the index and row (as a Series):
import pandas as pd
df = pd.DataFrame({'c1': [10, 11, 12], 'c2': [100, 110, 120]})
df = df.reset_index() # make sure indexes pair with number of rows
for index, row in df.iterrows():
print(row['c1'], row['c2'])
10 100
11 110
12 120
Answered By - waitingkuo
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.