Issue
I have a DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({'foo.aa': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
'foo.fighters': [0, 1, np.nan, 0, 0, 0],
'foo.bars': [0, 0, 0, 0, 0, 1],
'bar.baz': [5, 5, 6, 5, 5.6, 6.8],
'foo.fox': [2, 4, 1, 0, 0, 5],
'nas.foo': ['NA', 0, 1, 0, 0, 0],
'foo.manchu': ['NA', 0, 0, 0, 0, 0],})
I want to select values of 1 in columns starting with foo.
. Is there a better way to do it other than:
df2 = df[(df['foo.aa'] == 1)|
(df['foo.fighters'] == 1)|
(df['foo.bars'] == 1)|
(df['foo.fox'] == 1)|
(df['foo.manchu'] == 1)
]
Something similar to writing something like:
df2= df[df.STARTS_WITH_FOO == 1]
The answer should print out a DataFrame like this:
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 5.0 1.0 0 0 2 NA NA
1 5.0 2.1 0 1 4 0 0
2 6.0 NaN 0 NaN 1 0 1
5 6.8 6.8 1 0 5 0 0
[4 rows x 7 columns]
Solution
Just perform a list comprehension to create your columns:
In [28]:
filter_col = [col for col in df if col.startswith('foo')]
filter_col
Out[28]:
['foo.aa', 'foo.bars', 'foo.fighters', 'foo.fox', 'foo.manchu']
In [29]:
df[filter_col]
Out[29]:
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
3 4.7 0 0 0 0
4 5.6 0 0 0 0
5 6.8 1 0 5 0
Another method is to create a series from the columns and use the vectorised str method startswith
:
In [33]:
df[df.columns[pd.Series(df.columns).str.startswith('foo')]]
Out[33]:
foo.aa foo.bars foo.fighters foo.fox foo.manchu
0 1.0 0 0 2 NA
1 2.1 0 1 4 0
2 NaN 0 NaN 1 0
3 4.7 0 0 0 0
4 5.6 0 0 0 0
5 6.8 1 0 5 0
In order to achieve what you want you need to add the following to filter the values that don't meet your ==1
criteria:
In [36]:
df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]]==1]
Out[36]:
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 NaN 1 NaN NaN NaN NaN NaN
1 NaN NaN NaN 1 NaN NaN NaN
2 NaN NaN NaN NaN 1 NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN
5 NaN NaN 1 NaN NaN NaN NaN
EDIT
OK after seeing what you want the convoluted answer is this:
In [72]:
df.loc[df[df[df.columns[pd.Series(df.columns).str.startswith('foo')]] == 1].dropna(how='all', axis=0).index]
Out[72]:
bar.baz foo.aa foo.bars foo.fighters foo.fox foo.manchu nas.foo
0 5.0 1.0 0 0 2 NA NA
1 5.0 2.1 0 1 4 0 0
2 6.0 NaN 0 NaN 1 0 1
5 6.8 6.8 1 0 5 0 0
Answered By - EdChum
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.