Issue
I have dataframe, i want to split dataframe in groups based on condition from flag_0
and flag_1
column , when flag_0
is '3'
and and flag_1
is '1' continous.
Here is my dataframe example:
df=pd.DataFrame({'flag_0':[1,2,3,1,2,3,1,2,3,3,3,3,1,2,3,1,2,3,4,4],'flag_1':[1,2,3,1,2,3,1,2,1,1,1,1,1,2,1,1,2,3,4,4],'dd':[1,1,1,7,7,7,8,8,8,1,1,1,7,7,7,8,8,8,5,7]})
Out[172]:
flag_0 flag_1 dd
0 1 1 1
1 2 2 1
2 3 3 1
3 1 1 7
4 2 2 7
5 3 3 7
6 1 1 8
7 2 2 8
8 3 1 8
9 3 1 1
10 3 1 1
11 3 1 1
12 1 1 7
13 2 2 7
14 3 1 7
15 1 1 8
16 2 2 8
17 3 3 8
18 4 4 5
19 4 4 7
Desired output:
group_1
Out[172]:
flag_0 flag_1 dd
9 3 1 1
10 3 1 1
11 3 1 1
group 2
Out[172]:
flag_0 flag_1 dd
14 3 1 7
Solution
You can use a mask and groupby
to split the dataframe:
cond = {'flag_0': 3, 'flag_1': 1}
mask = df[list(cond)].eq(cond).all(1)
groups = [g for k,g in df[mask].groupby((~mask).cumsum())]
output:
[ flag_0 flag_1 dd
8 3 1 8
9 3 1 1
10 3 1 1
11 3 1 1,
flag_0 flag_1 dd
14 3 1 7]
groups[0]
flag_0 flag_1 dd
8 3 1 8
9 3 1 1
10 3 1 1
11 3 1 1
Answered By - mozway
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.