Issue
I'm trying to convert pytorch
model to tf.keras
model including weights conversion and came across an output missmatch between libraries' outputs.
Here I define two convolutional layers, which should be identical
torch_layer = torch.nn.Conv2d(
in_channels=3,
out_channels=64,
kernel_size=(7, 7),
stride=(2, 2),
padding=(3, 3),
dilation=1,
groups=1,
bias=False,
padding_mode='zeros'
)
tf_layer = tf.keras.layers.Conv2D(
filters=64,
kernel_size=(7, 7),
strides=(2, 2),
padding='same',
dilation_rate=(1, 1),
groups=1,
activation=None,
use_bias=False
)
# define model to specify input channel size
tf_model = tf.keras.Sequential([tf.keras.layers.Input((256, 256, 3), batch_size=1), tf_layer])
now I have torch weights and I convert them to tf.keras
format
# output_channels, input_channels, x, y
torch_weights = np.random.rand(64, 3, 7, 7)
# x, y, input_channels, output_channels
tf_weights = np.transpose(torch_weights, (2, 3, 1, 0))
# assign weights
torch_layer.weight = torch.nn.Parameter(torch.Tensor(torch_weights))
tf_model.layers[0].set_weights([tf_weights])
now I define input and the outputs are different (shape is the same, values are different), what am I doing wrong?
torch_inputs = np.random.rand(1, 3, 256, 256)
tf_inputs = np.transpose(torch_inputs, (0, 2, 3, 1))
torch_output = torch_layer(torch.Tensor(torch_inputs))
tf_output = tf_model.layers[0](tf_inputs)
Solution
In tensorflow, set_weights
is basically used for outputs from get_weights
, so it is better to use assign
to avoid making mistakes.
Besides, 'same' padding in tensorflow is a little bit complicated. For details, see my SO answer. It depends on input_shape
, kernel_size
and strides
. In your example here, it is translated to torch.nn.ZeroPad2d((2,3,2,3))
in pytorch.
Example codes: from tensorflow to pytorch
np.random.seed(88883)
#initialize the layers respectively
torch_layer = torch.nn.Conv2d(
in_channels=3,
out_channels=64,
kernel_size=(7, 7),
stride=(2, 2),
bias=False
)
torch_model = torch.nn.Sequential(
torch.nn.ZeroPad2d((2,3,2,3)),
torch_layer
)
tf_layer = tf.keras.layers.Conv2D(
filters=64,
kernel_size=(7, 7),
strides=(2, 2),
padding='same',
use_bias=False
)
#setting weights in torch layer and tf layer respectively
torch_weights = np.random.rand(64, 3, 7, 7)
tf_weights = np.transpose(torch_weights, (2, 3, 1, 0))
with torch.no_grad():
torch_layer.weight = torch.nn.Parameter(torch.Tensor(torch_weights))
tf_layer(np.zeros((1,256,256,3)))
tf_layer.kernel.assign(tf_weights)
#prepare inputs and do inference
torch_inputs = torch.Tensor(np.random.rand(1, 3, 256, 256))
tf_inputs = np.transpose(torch_inputs.numpy(), (0, 2, 3, 1))
with torch.no_grad():
torch_output = torch_model(torch_inputs)
tf_output = tf_layer(tf_inputs)
np.allclose(tf_output.numpy() ,np.transpose(torch_output.numpy(),(0, 2, 3, 1))) #True
Edit: from pytorch to tensorflow
torch_layer = torch.nn.Conv2d(
in_channels=3,
out_channels=64,
kernel_size=(7, 7),
stride=(2, 2),
padding=(3, 3),
bias=False
)
tf_layer=tf.keras.layers.Conv2D(
filters=64,
kernel_size=(7, 7),
strides=(2, 2),
padding='valid',
use_bias=False
)
tf_model = tf.keras.Sequential([
tf.keras.layers.ZeroPadding2D((3, 3)),
tf_layer
])
Answered By - Laplace Ricky
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.