Issue
I have the following image
lower = np.array([175, 125, 45], dtype="uint8")
upper = np.array([255, 255, 255], dtype="uint8")
mask = cv2.inRange(image, lower, upper)
img = cv2.bitwise_and(image, image, mask=mask)
plt.figure()
plt.imshow(img)
plt.axis('off')
plt.show()
now if I try to transform into grayscale like this:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
I get that:
And I would like to extract the number on it.
The suggestion:
gray = 255 - gray
emp = np.full_like(gray, 255)
emp -= gray
emp[emp==0] = 255
emp[emp<100] = 0
gauss = cv2.GaussianBlur(emp, (3,3), 1)
gauss[gauss<220] = 0
plt.imshow(gauss)
gives the image:
Then using pytesseract on any of the images:
data = pytesseract.image_to_string(img, config='outputbase digits')
gives:
'\x0c'
Another suggested solution is:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
thr = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV)[1]
txt = pytesseract.image_to_string(thr)
plt.imshow(thr)
And this gives
'\x0c'
Not very satisfying... Anyone has a better solution please?
Thanks!
Solution
I have a two step solution
-
- Apply thresholding
-
- Set psm mode to 7.
When you apply thresholding to the image:
Thresholding is a simplest method of displaying the features of the image.
Now from the output image, when we read:
txt = image_to_string(thr, config="--psm 7")
print(txt)
Result will be:
| 1,625 |
Now why do we set page-segmentation-mode (psm
) mode to the 7?
Well, treating image as a single text line will give the accurate result.
But we have to modify the result. Since the current result is | 1,625 |
We should remove the |
print("".join([t for t in txt if t != '|']))
Result:
1,625
Code:
import cv2
from pytesseract import image_to_string
img = cv2.imread("LZ3vi.png")
gry = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thr = cv2.threshold(gry, 0, 255,
cv2.THRESH_BINARY_INV)[1]
txt = image_to_string(thr, config="--psm 7")
print("".join([t for t in txt if t != '|']).strip())
Update
how do you get this clean black and white image from my original image?
Using 3-steps
-
- Reading the image using
opencv
'simread
function
-
img = cv2.imread("LZ3vi.png")
Now we read the image in
BGR
fashion. (NotRGB
)
- Reading the image using
-
- Convert the image to the graysclae
-
- Apply threshold
Now if you are wondering about thresholding. Read the simple-threhsolding
All my filters, grayscale... get weird colored images
The reason is, when you are displaying the image using pyplot, you need to set color-map (cmap
) to gray
plt.imshow(img, cmap='gray')
You can read the other types here
Answered By - Ahx
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.