Issue
I wanted to create a wrapper function over pandas.read_csv
to change the default separator and format the file a specific way. This is the code I had :
def custom_read(path, sep="|", **kwargs):
if not kwargs.get("chunksize", False):
df_ = pd.read_csv(path, sep=sep, **kwargs)
return format_df(df_, path)
else:
with pd.read_csv(path, sep=sep, **kwargs) as reader:
return (format_df(chunk, path) for chunk in reader)
It turns out that this segfaults when used like so :
L = [chunk.iloc[:10, :] for chunk in custom_read(my_file)]
From what I understood off the backtrace, the generator is created, then the file is closed and the segfault happens when the generator tries to read from the now closed file.
I could avoid the segfault with a minor refactoring :
def custom_read(path, sep="|", **kwargs):
if not kwargs.get("chunksize", False):
df_ = pd.read_csv(path, sep=sep, **kwargs)
return format_df(df_, path)
else:
reader = pd.read_csv(path, sep=sep, **kwargs)
return (format_df(chunk, path) for chunk in reader)
I couldn't find anything on the particular usecase of generators in with clauses, is it something to avoid ? Is this supposed not to work or is this a bug of some kind ?
Is there a way to avoid this error but still use the encouraged with
statement ?
Solution
You could use a generator which keeps the file open. See the following example:
import os
def lines_format(lines):
return "\n".join(f"*{line.strip()}*" for line in lines)
def chunk_gen(file, chunksize):
with open(file, mode='r') as f:
while True:
lines = f.readlines(chunksize)
if not lines:
break
yield lines_format(lines)
def get_formatted_pages(file, chunksize=0):
if chunksize > 0:
return chunk_gen(file, chunksize)
else:
with open(file, mode='r') as f:
lines = f.readlines()
return [lines_format(lines)]
with open("abc.txt", mode='w') as f:
f.write(os.linesep.join('abc'))
pages = get_formatted_pages("abc.txt")
for i, page in enumerate(pages, start=1):
print(f"Page {i}")
print(page)
pages = get_formatted_pages("abc.txt", chunksize=2)
for i, page in enumerate(pages, start=1):
print(f"Page {i}")
print(page)
Edit:
In your pandas.read_csv
use case, this would look like
import pandas as pd
df = pd.DataFrame({'char': list('abc'), "num": range(3)})
df.to_csv('abc.csv')
def gen_chunk(file, chunksize):
with pd.read_csv(file, chunksize=chunksize, index_col=0) as reader:
for chunk in reader:
yield format_df(chunk)
def format_df(df):
# do something
df['char'] = df['char'].str.capitalize()
return df
def get_formatted_pages(file, chunksize=0):
if chunksize > 0:
return gen_chunk(file, chunksize)
else:
return [format_df(pd.read_csv(file, index_col=0))]
list(get_formatted_pages('abc.csv', chunksize=2))
Answered By - Carlos Horn
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.