Issue
I am trying to convert the following code to work with Transformers 2.5.0. As written, it works in version 4.18.0, but not 2.5.0.
# Converting pretrained BERT classification model to regression model
# i.e. extracting base model and swapping out heads
from transformers import BertTokenizer, BertModel, BertConfig, BertForMaskedLM, BertForSequenceClassification, AutoConfig, AutoModelForTokenClassification
import torch
import numpy as np
old_model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=1)
model.bert = old_model.bert
# Ensure that model parameters are equivalent except for classifier head layer
for param_name in model.state_dict():
if 'classifier' not in param_name:
sub_param, full_param = model.state_dict()[param_name], old_model.state_dict()[param_name] # type: torch.Tensor, torch.Tensor
assert (sub_param.cpu().numpy() == full_param.cpu().numpy()).all(), param_name
tokenizer = BertTokenizer.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
output_value = np.array(logits)[0][0]
print(output_value)
tokenizer is not callable with transformers 2.5.0, resulting the following:
TypeError Traceback (most recent call last)
<ipython-input-1-d83f0d613f4b> in <module>
19
20
---> 21 inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
22
23 with torch.no_grad():
TypeError: 'BertTokenizer' object is not callable
However, attempting to replace tokenizer() with tokenizer.tokenize() results in the following:
TypeError Traceback (most recent call last)
<ipython-input-2-1d431131eb87> in <module>
21
22 with torch.no_grad():
---> 23 logits = model(**inputs).logits
24
25 output_value = np.array(logits)[0][0]
TypeError: BertForSequenceClassification object argument after ** must be a mapping, not list
Any help would be greatly appreciated.
Solution
Using tokenizer.encode_plus() as suggested by @cronoik:
tokenized = tokenizer.encode_plus("Hello, my dog is cute", return_tensors="pt")
with torch.no_grad():
logits = model(**tokenized)
output_value = np.array(logits)[0]
print(output_value)
Solution
Sadly their documentation for the old versions is broken, but you can use encode_plus as shown in the following (he oldest available documentation of encode_plus is from 2.10.0):
import torch
from transformers import BertTokenizer
t = BertTokenizer.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
tokenized = t.encode_plus("Hello, my dog is cute", return_tensors='pt')
print(tokenized)
Output:
{'input_ids': tensor([[ 101, 7592, 1010, 2026, 3899, 2003, 10140, 102]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1]])}
Answered By - cronoik
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.