Issue
I have a HTML document where I want to extract the address but I'm unable to. Here is the HTML document. It contains an address that is not enclosed with brackets, and a beginner like me is not able to extract it without it (e.g. with find()
or similar).
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Title</title>
</head>
<body>
<table class="novip">
<tr class="novip">
<td class="novip-portrait-picture"
rowspan="5">
<a class="novip" href="refer.html">URL</a>
</td>
<td class="novip-left">
<a class="novip-firmen-name"
href="refer.html"
target="_top">
John Doe
</a>
</td>
<td class="novip-right"
rowspan="2">
<a class="novip" href="refer.html">URL</a>
</td>
</tr>
<tr class="novip">
<td class="novip-left">
<span class="novip-left-titel">
Prof.
</span>
<span class="novip-left-fachbezeichnung">
Professor for History
</span>
<br/>
Rose Avenue 33, 4302843 A City
<br/>
Tel: <a>234 23 43244</a>
<a class="novip-left-make_appointment-button-active">Booking</a>
</td>
</tr>
</table>
</body>
</html>
I would like to extract the address Rose Avenue 33, 4302843 A City
.
Here is my attempt but I cannot narrow it down enough.
from bs4 import BeautifulSoup
r = requests.get(url)
r.encoding = 'utf8'
html_doc = r.text
soup = BeautifulSoup(html_doc, features='html5lib')
table = []
tables = soup.find_all("table", {"class": "novip"})
for table in tables:
rows = table.findChildren('tr')
address = rows[1].find('span', 'novip-left-fachbezeichnung').text
Solution
The following code will approximate your attempt. It's based on bs4 (BeautifulSoup), pandas and requests:
import requests
from bs4 import BeautifulSoup
import pandas as pd
url = 'https://www.doktor.ch/gynaekologen/gynaekologen_k_lu.html'
r = requests.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
dr_list = []
doctor_cards = soup.select('table.novip')
for card in doctor_cards:
try:
dr_name = card.select_one('a.novip-firmen-name').text.strip()
except Exception as e:
dr_name = 'No Name'
try:
dr_url = card.select_one('a').get('href')
except Exception as e:
dr_url = 'No Url'
try:
dr_title = card.select_one('span.novip-left-titel').text.strip()
except Exception as e:
dr_title = 'No title'
try:
dr_specialisation = card.select_one('span.novip-left-fachbezeichnung').text.strip()
except Exception as e:
dr_specialisation = 'No specialisation'
try:
dr_address_span = card.select_one('span.novip-left-adresszusatz')
dr_address = dr_address_span.text.strip() + ' ' + dr_address_span.next_sibling.strip()
except Exception as e:
dr_address_span = 'No address'
if len(card.select_one('span.novip-left-fachbezeichnung').next_sibling.strip()) > 5:
dr_address = card.select_one('span.novip-left-fachbezeichnung').next_sibling.strip().replace('\n', ' ')
elif len(card.select_one('span.novip-left-fachbezeichnung').next_sibling.next_sibling) > 5:
dr_address = card.select_one('span.novip-left-fachbezeichnung').next_sibling.next_sibling.text.strip().replace('\n', ' ')
else:
dr_address = card.select_one('span.novip-left-fachbezeichnung').next_sibling.next_sibling.next_sibling.strip().replace('\n', ' ')
dr_list.append((dr_name, dr_title, dr_specialisation, dr_address))
df = pd.DataFrame(dr_list, columns = ['Name', 'Title', 'Spec', 'Address'])
df.to_csv('swiss_docs.csv')
print(df.head())
This will save a csv file with dr details, looking like this:
Name Title Spec Address
0 Wey Barbara Dr. med. Fachärztin FMH für Gynäkologie u. Geburtshilfe Hauptstrasse 12, 6033 Buchrain Tel: 041 444 30 80 Terminanfrage Karte
1 Bohl Urs Dr. med. Facharzt FMH für Gynäkologie und Geburtshilfe Seetalstrasse 11, 6020 Emmenbrücke
2 Füchsel Glenn Dr. med. Facharzt für Gynäkologie und Geburtshilfe docstation Gesundheitszentrum Emmen Mooshüslistrasse 6, 6032 Emmen
3 Dal Pian Désirée Dr. med. Fachärztin FMH für Gynäkologie u. Geburtshilfe Frauenpraxis Zero Plus Am Mattenhof 4a, 6010 Kriens
4 Gilke Ursula Dr. med. Fachärztin für Gynäkologie u. Geburtshilfe Schachenstrasse 5, 6010 Kriens
5 Amann Stefanie Dr. med. Fachärztin FMH Gynäkologie u. Geburtshilfe Frauenpraxis am See Alpenstrasse 1, 6004 Luzern
6 Ballabio Nadja Dr. med. Fachärztin FMH Gynäkologie und Geburtshilfe gyn-zentrum ag Haldenstrasse 11, 6006 Luzern
[...]
There are better, more elegant solutions out there. Have a look over the bs4 documentation, at https://www.crummy.com/software/BeautifulSoup/bs4/doc/
Answered By - platipus_on_fire
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.