Issue
I'm completely new to Keras and AI. I have Keras 2.9 with Python 3.8.10 under Ubuntu 20.04. I have a 2-input model which uses synthetic data generated by a C++ function. I call the C++ function using Pybind11. The function returns an 512 by 512 grayscale image and a number. I give these alongside a generated parameter number to the model, the 2 numbers in a vector with repetitions. Training the model gives this error message:
[INFO] training model...
Epoch 1/10
2022-08-22 18:36:27.276873: W tensorflow/core/framework/op_kernel.cc:1733] INVALID_ARGUMENT: TypeError: `generator` yielded an element that did not match the expected structure. The expected structure was ((tf.float32, tf.float32), tf.float32), but the yielded element was [[array([0.47688578, 0.47688578, 0.53283023, 0.53283023]), array([[0.56156078, 0.56156078, 0.56291341, ..., 0.64667391, 0.64674161,
0.64741869],
...,
[0.42745098, 0.43529412, 0.41568627, ..., 0.48235294, 0.45882353,
0.45098039]])], array([0.64286654])].
While printing model branch inputs and outputs (see code below) gives this:
KerasTensor(type_spec=TensorSpec(shape=(None, 4), dtype=tf.float32, name='input_1'), name='input_1', description="created by layer 'input_1'")
KerasTensor(type_spec=TensorSpec(shape=(None, 512, 512, 1), dtype=tf.float32, name='input_2'), name='input_2', description="created by layer 'input_2'")
KerasTensor(type_spec=TensorSpec(shape=(None, 4), dtype=tf.float32, name=None), name='dense/Relu:0', description="created by layer 'dense'")
KerasTensor(type_spec=TensorSpec(shape=(None, 4), dtype=tf.float32, name=None), name='activation_5/Relu:0', description="created by layer 'activation_5'")
The code is:
def generate(aBatchSize:int=32, aRepeatParameter:int=2):
dim = (512, 512)
paraShape = (aRepeatParameter * 2,)
def generator():
xParameter = numpy.empty(paraShape, dtype=float)
xImage = numpy.empty(dim, dtype=float)
y = numpy.empty((1), dtype=float)
# populate variables
xImage = randomLandscape(dist, height, tempAmb, tempBase) # Pybind11 call
for i in range(1, aRepeatParameter):
xParameter[i] = xParameter[0]
xParameter[aRepeatParameter + i] = xParameter[aRepeatParameter]
y[0] = (tempBase - tempAmb) / 5
yield [[xParameter, xImage], y] # This was already yield {"parameters": xParameter, "image": xImage}, y -- no luck
dataset = tensorflow.data.Dataset.from_generator(generator,
output_signature=(
(tensorflow.TensorSpec(shape=paraShape, dtype=tensorflow.float32, name="parameters"),
tensorflow.TensorSpec(shape=dim, dtype=tensorflow.float32, name="image")),
tensorflow.TensorSpec(shape=(1), dtype=tensorflow.float32, name="y")
))
dataset = dataset.batch(aBatchSize)
return dataset
def createMlp(aRepeatParameter:int):
vectorSize = aRepeatParameter * 2
inputs = Input(shape=(vectorSize,))
x = inputs
x = Dense(vectorSize, activation="relu")(x)
return Model(inputs, x)
def createCnn():
filters=(8, 4, 2, 1)
inputShape = (512, 512, 1)
chanDim = -1
inputs = Input(shape=inputShape)
x = inputs
for (i, f) in enumerate(filters):
x = Conv2D(f, (3, 3), padding="same")(x)
x = Activation("relu")(x)
x = BatchNormalization(axis=chanDim)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = Dense(16)(x)
x = Activation("relu")(x)
x = BatchNormalization(axis=chanDim)(x)
x = Dropout(0.5)(x)
x = Dense(4)(x)
x = Activation("relu")(x)
return Model(inputs, x)
repeatParameter:int = 2
mlp = createMlp(repeatParameter)
cnn = createCnn()
print(mlp.input)
print(cnn.input)
print(mlp.output)
print(cnn.output)
combinedInput = Concatenate(axis=1)([mlp.output, cnn.output])
x = Dense(4, activation="relu")(combinedInput)
x = Dense(1, activation="linear")(x)
model = Model(inputs=[mlp.input, cnn.input], outputs=x)
opt = Adam(learning_rate=1e-3, decay=1e-3 / 200)
model.compile(loss="mean_absolute_percentage_error", optimizer=opt)
batchSize = 32
model.fit(landscapeGenerator.generate(batchSize, repeatParameter), validation_data=landscapeGenerator.generate(batchSize, repeatParameter),
epochs=10, steps_per_epoch=10, validation_split=0.3,
use_multiprocessing=True, workers=2)
Solution
It turned out my generator function was no real Python generator. Here is the correct form:
def generate(aBatchSize:int=32, aRepeatParameter:int=2):
dim = (512, 512)
paraShape = (aRepeatParameter * 2,)
def generator():
while True:
xParameter = numpy.empty(paraShape, dtype=float)
xImage = numpy.empty(dim, dtype=float)
y = numpy.empty((1), dtype=float)
# populate variables
xImage = randomLandscape(dist, height, tempAmb, tempBase)
for i in range(1, aRepeatParameter):
xParameter[i] = xParameter[0]
xParameter[aRepeatParameter + i] = xParameter[aRepeatParameter]
y[0] = (tempBase - tempAmb) / 5
yield ((xParameter, xImage), y)
dataset = tensorflow.data.Dataset.from_generator(generator,
output_signature=(
(tensorflow.TensorSpec(shape=paraShape, dtype=tensorflow.float32),
tensorflow.TensorSpec(shape=dim, dtype=tensorflow.float32)),
tensorflow.TensorSpec(shape=(1), dtype=tensorflow.float32)
))
dataset = dataset.batch(aBatchSize)
return dataset
Answered By - Balázs Bámer
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.