Issue
This is my Keras model
model = keras.Sequential
(
[
Dense(2, activation="relu", name="L1"),
Dense(3, activation="relu", name="L2"),
Dense(4,name="L3")
]
)
and in the next line i use compile() function on my model
model.compile(optimizer="sgd", loss="mse", metrics=[MeanSquaredError()])
but i get this TypeError when i run it
TypeError: compile() missing 1 required positional argument: 'self'
Solution
first of all you need to understand how many input and outputs you have. for example you want to detect the 5 class than your last layer should have 5 as dense attributes. so add this as model
model=tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16,(3,3),activation='relu',input_shape=(224,224,3)),
tf.keras.layers.MaxPool2D(2,2),
#1
tf.keras.layers.Conv2D(32,(3,3),activation='relu'),
tf.keras.layers.MaxPool2D(2,2),
#2
tf.keras.layers.Conv2D(64,(3,3),activation='relu'),
tf.keras.layers.MaxPool2D(2,2),
#
#
tf.keras.layers.Flatten(),
#
tf.keras.layers.Dense(512,activation='relu'),
#
tf.keras.layers.Dense(4,activation='softmax')
]
)
than compile your model
model.compile(optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.01),
loss='categorical_crossentropy',metrics=['accuracy'])
this will work.
Answered By - Azhar Khan
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.