Issue
I want to print the sizes of the inputs and outputs of all the layers of a pretrained model. I uae this pretrained model as self.feature
in my class
.
The print of this pretrained model is as follows:
TimeSformer(
(model): VisionTransformer(
(dropout): Dropout(p=0.0, inplace=False)
(patch_embed): PatchEmbed(
(proj): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
)
(pos_drop): Dropout(p=0.0, inplace=False)
(time_drop): Dropout(p=0.0, inplace=False)
(blocks): ModuleList(
(0): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(attn_drop): Dropout(p=0.0, inplace=False)
)
(temporal_norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(temporal_attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(attn_drop): Dropout(p=0.0, inplace=False)
)
(temporal_fc): Linear(in_features=768, out_features=768, bias=True)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(attn_drop): Dropout(p=0.0, inplace=False)
)
(temporal_norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(temporal_attn): Attention( # *********
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(proj): Linear(in_features=768, out_features=768, bias=True) # @@@@@@@
(proj_drop): Dropout(p=0.0, inplace=False)
(attn_drop): Dropout(p=0.0, inplace=False)
)
(temporal_fc): Linear(in_features=768, out_features=768, bias=True)
(drop_path): DropPath()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
.
.
.
.
.
.
(11): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(attn_drop): Dropout(p=0.0, inplace=False)
)
(temporal_norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(temporal_attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(attn_drop): Dropout(p=0.0, inplace=False)
)
(temporal_fc): Linear(in_features=768, out_features=768, bias=True)
(drop_path): DropPath()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(head): Linear(in_features=768, out_features=400, bias=True)
)
This the the code of my class and my method for printing the size of layers:
class Class(nn.Module):
def __init__(self, pretrained=False):
super(Class, self).__init__()
self.feature =TimeSformer(img_size=224, num_classes=400, num_frames=8, attention_type='divided_space_time',
pretrained_model='path/to/the/weight.pyth')
def forward(self, x):
for layer in self.feature:
x = layer(x)
print(x.size())
return x
I'm using the following approach for printing
But I am facing this error:
TypeError: 'TimeSformer' object is not iterable
How can I print the sizes of all the layers?
Update:
using the Following code receives the error mentioned in the comment:
def forward(self, x, out_consp = False):
layers=list(self.featureExtractor.children())
for layer in layers:
x = layer(x)
print(x.size())
return x
Solution
You can use hooks to print the shape of the input and the output of each layer. You can use this code to do what you want.
def hook_function(module, input, output):
print(f'{module.name} :')
print(module)
#print(module)
if isinstance(input[0], tuple):
print('input shapes:')
for elem in input[0]:
print(elem.shape)
else:
print(f'input shape: {input[0].shape}')
if isinstance(output, tuple):
print('output shapes:')
for elem in output:
print(elem.shape)
else:
print(f'output shape: {output.shape}')
print('')
def set_names(net):
def recurs(net,parent_name=None):
for name, mod in net.named_children():
if parent_name is not None:
name = '_'.join([parent_name, name])
recurs(mod, name)
setattr(mod,'name',name)
recurs(net)
def print_shapes(network, dummy_input_shape, device='cuda', eval=True):
network = network.to(device)
if eval:
network.eval()
else:
network.train()
assert dummy_input_shape[0] > 1
#print(network)
dummy = torch.randn(dummy_input_shape, device=device)
set_names(network)
handles = []
def attach_hooks(net):
leaf_layers = 0
for mod in net.children():
leaf_layers += 1
attach_hooks(mod)
if leaf_layers == 0:
handles.append(net.register_forward_hook(hook_function))
attach_hooks(network)
network(dummy)
# if needed
for handle in handles:
handle.remove()
Example:
network = TimeSformer(img_size=224, num_classes=400, num_frames=8, attention_type='divided_space_time',
pretrained_model='path/to/the/weight.pyth')
# The behaviour of a forward function could be different during training
print_shapes(network,(1,3,224,224),'cpu', eval=True)
print_shapes(network,(2,3,224,224),'cpu', eval=False)
A snippet of the output includes a layer that is defined before 'temporal_norm1' layer in 'Block' module but called or executed later (norm1).
model_blocks_11_temporal_fc :
Linear(in_features=768, out_features=768, bias=True)
input shape: torch.Size([2, 1568, 768])
output shape: torch.Size([2, 1568, 768])
model_blocks_11_norm1 :
LayerNorm((768,), eps=1e-06, elementwise_affine=True)
input shape: torch.Size([16, 197, 768])
output shape: torch.Size([16, 197, 768])
Answered By - Hatem
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.